Ex 1.4, 11 - Chapter 1 Class 12 Relation and Functions (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 1 Class 12 Relation and Functions
Ex 1.2 , 10 Important
Example 17 Important
Question 8 Important Deleted for CBSE Board 2025 Exams
Ex 1.3, 3 (i) Important Deleted for CBSE Board 2025 Exams
Ex 1.3 , 6 Deleted for CBSE Board 2025 Exams
Ex 1.3 , 8 Important Deleted for CBSE Board 2025 Exams
Ex 1.3 , 9 Important Deleted for CBSE Board 2025 Exams
Ex 1.3, 13 (MCQ) Important Deleted for CBSE Board 2025 Exams
Ex 1.3, 14 (MCQ) Important Deleted for CBSE Board 2025 Exams
Ex 1.4, 11 Important Deleted for CBSE Board 2025 Exams You are here
Question 3 Important Deleted for CBSE Board 2025 Exams
Misc 1 Important
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Deleted for CBSE Board 2025 Exams
Chapter 1 Class 12 Relation and Functions
Last updated at April 16, 2024 by Teachoo
Ex 1.4, 11 Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Find the identity element for * on A, if any. Check commutative * is commutative if (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ R Since (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ R * is commutative (a, b) * (c, d) = (a + c, b + d) (c, d) * (a, b) = (c + a, d + b) = (a + c, b + d) (a, b) * (c, d) = (a + c, b + d) Check associative * is associative if (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) ∀ a, b, c, d, x, y ∈ R Since (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) * is associative (a, b) * ( (c, d) * (x, y) ) = (a, b) * (c + x, d + y) = (a + c + x , b + d + y) ((a, b) * (c, d)) * (x, y) = (a + c, b + d) * (x, y) = (a + c + x , b + d + y) (a, b) * (c, d) = (a + c, b + d) Identity element e is identity of * if (a, b) * e = e * (a, b) = (a, b) where e = (x, y) So, (a, b) * (x, y) = (x, y) * (a, b) = (a, b) (a + x, b + y) = (x + a , b + y) = (a, b) e is the identity of * if a * e = e * a = a Now, (a + x, b + y) = (a, b) Comparing Therefore, the operation * does not have any identity element. a + x = a x = a – a = 0 x = 0 b + y = b y = b – b y = 0 Since A = N × N x & y are natural numbers Since 0 is not natural Identity element does not exist