Slide22.JPG

Slide23.JPG
Slide24.JPG


Transcript

Ex 4.2, 5 If area of triangle is 35 square units with vertices (2, −6), (5, 4), and (k, 4). Then k is 12 B. −2 C. −12, −2 D. 12, −2 The area of triangle is given by ∆ = 1/2 |■8(x1&y1&1@x2&y2&1@x3&y3&1)| Here, Area of triangle is 35 square unit Since area is always positive , So ∆ can have positive & negative value ⇒ ∆ = ± 35 square unit Also, x1 = 2 , y1 = – 6 x2 = 5 , y2 = 4 x3 = k , y3 = 4 Putting values ±35 = 1/2 |■8(2&−6&1@5&4&1@k&4&1)| ±35 = 1/2 (2|■8(4&1@4&1)|−(−6)|■8(5&1@k&1)|+1|■8(5&4@k&4)|) ±35 = 1/2 (2 (4 – 4) + 6 (5 – k) + 1 (20 – 4k)) ±35 = 1/2 (2(0) + 6 (5 – k) + (20 – 4k) ±35 = 1/2 (50 – 10k) ±35 × 2 = (50 – 10k) ±70 = (50 – 10k) So, 70 = 50 – 10k or – 70 = 50 – 10k Hence , the required value of k is –2 or 12 So, correct answer is D Solving 70 = 50 – 10k 70 – 50 = –10k 20 = – 10k –10k = 20 k = 20/(−10) = – 2 Solving –70 = 50 – 10k –70 – 50 = –10k –120 = – 10k –10k = –120 k = (−120)/(−10) = 12

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.