Check sibling questions

Misc 12 - Chapter 2 Inverse Trigonometry - Prove 9pi/8 - 9/4

Misc 12 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 2
Misc 12 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 3
Misc 12 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 4

This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Transcript

Misc 12 Prove 9π/8 – 9/4 sin−1 1/3 = 9/4 sin−1 (2√2)/3 Solving L.H.S. 9π/8 – 9/4 sin−1 1/3 = 9/4 (𝝅/(𝟐 )−"sin−1 " 𝟏/𝟑) = 9/4 "cos−1 " 𝟏/𝟑 Using sin-1x + cos−1x = 𝝅/𝟐 cos-1x = 𝜋/2 – sin−1x Replace x by 1/3 cos-1 1/3 = 𝜋/2 – sin−1 1/3 We convert cos−1 to sin−1 Let a = "cos−1" 1/3 cos a = 1/3 Now, sin a = √(1−cos2 𝑎) =√(1−(1/3)^2 ) "=" √(1−1/9) "=" √((9 − 1)/9) "=" √(8/9)=√((22 × 2)/32) "=" (√(2^2 ) × √2)/√(3^2 ) "=" (2 √2)/3 Thus, a = sin−1 ((2 √2)/3) Hence, "cos−1 " 𝟏/𝟑 = a = sin−1 ((𝟐 √𝟐)/𝟑) Now, From (1) 9π/8 – 9/4 sin−1 1/3 = 9/4 "cos−1 " 1/3 Putting value = 𝟗/𝟒 sin−1 ((𝟐 √𝟐)/𝟑) Hence, 9π/8 – 9/4 sin−1 1/3 = 9/4 sin−1 ((2 √2)/3) Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.