Check sibling questions

Misc 8 - Prove tan-1 1/5 + tan-1 1/7 + tan-1 1/3 + tan-1 1/8

Misc. 8 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 2
Misc. 8 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 3

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only โ‚น83 per month


Transcript

Misc 8 Prove that tanโˆ’1 1/5 + tanโˆ’1 1/7 + tanโˆ’1 1/3 + tanโˆ’1 1/8 = ๐œ‹/4 We know that tanโˆ’1 x + tanโˆ’1 y = tanโˆ’1 ((๐ฑ + ๐ฒ )/(๐Ÿ โˆ’ ๐ฑ๐ฒ)) tanโˆ’1 ๐Ÿ/๐Ÿ“ + tanโˆ’1 ๐Ÿ/๐Ÿ• = tanโˆ’1 (1/5 + 1/7)/(1โˆ’ 1/5 ร— 1/7) = tanโˆ’1 ((7 + 5)/(5(7)))/( (35 โˆ’ 1)/35 ) = tanโˆ’1 (6/17) tanโˆ’1 ๐Ÿ/๐Ÿ‘ + tanโˆ’1 ๐Ÿ/๐Ÿ– = tanโˆ’1 (1/3 + 1/8)/(1โˆ’ 1/3 ร— 1/8) = tanโˆ’1 ( (8 + 3)/(3(8)))/( (24 โˆ’ 1)/24) = tan โˆ’ 1 (11/23) Solving L.H.S tanโˆ’1 1/5 + tanโˆ’1 1/7 + tanโˆ’1 1/3 + tanโˆ’1 1/8 = ("tanโˆ’1 " 1/5 " + tanโˆ’1 " 1/7) + ("tanโˆ’1 " 1/3 " + tanโˆ’1 " 1/8) = tan-1 (๐Ÿ”/๐Ÿ๐Ÿ•) + tanโˆ’1 (๐Ÿ๐Ÿ/๐Ÿ๐Ÿ‘) = tanโˆ’1 (6/17 + 11/23)/(1 โˆ’ 6/17 ร— 11/23) We know that tanโˆ’1 x + tanโˆ’1 y = tanโˆ’1 ((๐’™ + ๐’š )/(๐Ÿ โˆ’ ๐’™๐’š)) Replacing x by 6/17 and y by 11/23 = tanโˆ’1 ( (6(23) + 11(17))/(17(23)))/(1 โˆ’ 66/391) = tanโˆ’1 ( (138 + 187)/391)/((391 โˆ’ 66)/391) = tanโˆ’1 ( 325/391)/(325/391) = tanโˆ’1 1 = tanโˆ’1 ("tan " ๐…/๐Ÿ’) = ฯ€/4 = R.H.S Hence proved (As tan ๐œ‹/4 = 1)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.