Slide47.JPG

Slide48.JPG
Slide49.JPG
Slide50.JPG
Slide51.JPG Slide52.JPG


Transcript

Example 9 On her vacations Veena visits four cities (A, B, C and D) in a random order. What is the probability that she visits A before B? 4 cities can be visited in any of following order S = {█("ABCD, ABDC, ACBD, ACDB, ADBC, ADCB," @" BACD, BADC, BDAC, BDCA, BCAD, BCDA," @" CABD, CADB, CBDA, CBAD, CDAB, CDBA," @" DABC, DACB, DBCA, DBAC, DCAB, DCBA" )} n(S) = 24 Let E be the event that “she visits A before B“ Hence , E = {█("ABCD, ABDC, ADBC, ACDB, ADBC, ADCB," @"CABD, CADB, CDAB, " @"DABC, DACB, DCAB," )} n(E) = 12 P(E) = (𝑛(𝐸))/(𝑛(𝑆)) = 12/24 = 𝟏/𝟐 Example 14 What is the probability that she visits (ii) A before B and B before C? S = {█("ABCD, ABDC, ACBD, ACDB, ADBC, ADCB," @" BACD, BADC, BDAC, BDCA, BCAD, BCDA," @" CABD, CADB, CBDA, CBAD, CDAB, CDBA," @" DABC, DACB, DBCA, DBAC, DCAB, DCBA" )} Let F be the event “she visits A before B and B before C “ F = {█("ABCD, ABDC, ADBC , DABC" )} So, n(F) = 4 P(F) = (𝑛(𝐹))/(𝑛(𝑆)) = 4/24 = 𝟏/𝟔 Example 14 What is the probability that she visits (iii) A first and B last? S = {█("ABCD, ABDC, ACBD, ACDB, ADBC, ADCB," @" BACD, BADC, BDAC, BDCA, BCAD, BCDA," @" CABD, CADB, CBDA, CBAD, CDAB, CDBA," @" DABC, DACB, DBCA, DBAC, DCAB, DCBA" )} Let G be the event “she visits A first and B last” G = {█("ACDB, ADCB" )} So, n(G) = 2 P(G) = (𝑛(𝐺))/(𝑛(𝑆)) = 2/24 = 𝟏/𝟏𝟐 Example 14 What is the probability that she visits (iv) A either first or second? S = {█("ABCD, ABDC, ACBD, ACDB, ADBC, ADCB," @" BACD, BADC, BDAC, BDCA, BCAD, BCDA," @" CABD, CADB, CBDA, CBAD, CDAB, CDBA," @" DABC, DACB, DBCA, DBAC, DCAB, DCBA" )} Let H be the event “she visits A either first or second” H = {█("ABCD, ABDC, ADBC, ACDB, ADBC, ADCB," @" BACD, BADC,CABD, CADB,DABC, DACB," )} So, n(H) = 12 P(H) = (𝑛(𝐻))/(𝑛(𝑆)) = 12/24 = 𝟏/𝟐 Example 14 What is the probability that she visits (v) A just before B? S = {█("ABCD, ABDC, ACBD, ACDB, ADBC, ADCB," @" BACD, BADC, BDAC, BDCA, BCAD, BCDA," @" CABD, CADB, CBDA, CBAD, CDAB, CDBA," @" DABC, DACB, DBCA, DBAC, DCAB, DCBA" )} Let I be the event “she visits A just before B” I = {█("ABCD, ABDC, CABD, CDAB, DABC, DCAB," )} So, n(I) = 6 P(I) = (𝑛(𝐼))/(𝑛(𝑆)) = 6/24 = 𝟏/𝟒

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.