Slide82.JPG

Slide83.JPG
Slide84.JPG Slide85.JPG Slide86.JPG Slide87.JPG

Remove Ads Share on WhatsApp

Transcript

Question 2 Use either a suitable identity or the distributive property to find each of the following products. (i) (p โ€“ 1) (p + 11)We will use distributive property for this (๐’‘โˆ’๐Ÿ) (๐’‘+๐Ÿ๐Ÿ)=๐‘(๐‘+11)โˆ’1(๐‘+11) =๐‘^2+11๐‘โˆ’๐‘โˆ’11 =๐’‘^๐Ÿ+๐Ÿ๐ŸŽ๐’‘โˆ’๐Ÿ๐Ÿ Question 2 Use either a suitable identity or the distributive property to find each of the following products. (ii) (3a โ€“ 9b) (3a + 9b)We can use the property (x + y)(x โ€“ y) = x2 โ€“ y2 Now, (3a โ€“ 9b) (3a + 9b) = (3a)2 โ€“ (9b)2 = 32 ร— a2 โ€“ 92 ร— b2 = 9a2 โ€“ 81b2 Question 2 Use either a suitable identity or the distributive property to find each of the following products. (iii) โ€“(2y + 5) (3y + 4)We will use distributive property for this First, we calculate bracket and then multiply negative sign Now, โˆ’(๐Ÿ๐ฒ+๐Ÿ“)(๐Ÿ‘๐ฒ+๐Ÿ’)=โˆ’[2๐‘ฆ(3๐‘ฆ+4)+5(3๐‘ฆ+4)] =โˆ’[2๐‘ฆ(3๐‘ฆ+4)+5(3๐‘ฆ+4)] =โˆ’[2๐‘ฆ ร— 3๐‘ฆ+8๐‘ฆ+15๐‘ฆ+20] =โˆ’[6๐‘ฆ^2+23๐‘ฆ+20] =โˆ’๐Ÿ”๐’š^๐Ÿโˆ’๐Ÿ๐Ÿ‘๐’šโˆ’๐Ÿ๐ŸŽ Question 2 Use either a suitable identity or the distributive property to find each of the following products. (iv) (6x + 5y)2We can use the property (a + b)2 = a2 + 2ab + b2 Now, (๐Ÿ”๐’™+๐Ÿ“๐’š)^๐Ÿ=(6๐‘ฅ)^2+2 ร— 6๐‘ฅ ร— 5๐‘ฆ+(5๐‘ฆ)^2 =6^2 ร— ๐‘ฅ^2+2 ร— 6 ร— 5 ร— ๐‘ฅ๐‘ฆ+5^2 ร— ๐‘ฆ^2 =๐Ÿ‘๐Ÿ”๐’™^๐Ÿ+๐Ÿ”๐ŸŽ๐’™๐’š+๐Ÿ๐Ÿ“๐’š^๐Ÿ Question 2 Use either a suitable identity or the distributive property to find each of the following products. (v) (2x โ€“ 1/2)2We can use the property (a โ€“ b)2 = a2 โ€“ 2ab + b2 Now, (๐Ÿ๐’™โˆ’๐Ÿ/๐Ÿ)^๐Ÿ=(2๐‘ฅ)^2โˆ’2 ร— 2๐‘ฅ ร—1/2+(1/2)^2 =2^2 ร— ๐‘ฅ^2โˆ’2 ร— 2 ร—1/2 ร— ๐‘ฅ+1/4 =๐Ÿ’๐’™^๐Ÿโˆ’๐Ÿ๐’™+๐Ÿ/๐Ÿ’ Question 2 Use either a suitable identity or the distributive property to find each of the following products. (vi) (7p) ร— (3r) ร— (p + 2)First we multiply 7p & 3r, And then we distribute in the bracket Now, 7๐‘ ร— 3๐‘Ÿ ร— (๐‘+2)=(7 ร— 3) ร—(๐‘ ร— ๐‘Ÿ) ร—(๐‘+2) =๐Ÿ๐Ÿ๐’‘๐’“ (๐’‘+๐Ÿ) =21๐‘๐‘Ÿ ร— ๐‘+21๐‘๐‘Ÿ ร—2 =๐Ÿ๐Ÿ๐’‘^๐Ÿ ๐’“+๐Ÿ’๐Ÿ๐’‘๐’“

CA Maninder Singh's photo - Co-founder, Teachoo

Made by

CA Maninder Singh

CA Maninder Singh is a Chartered Accountant for the past 16 years. He also provides Accounts Tax GST Training in Delhi, Kerala and online.