



Miscellaneous
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii) Important
Misc 2 (iv)
Misc 2 (v)
Misc 2 (vi) Important
Misc 3
Misc 4 Important
Misc 5
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11
Misc 12 Important
Misc 13 Important
Misc 14
Misc 15 Important
Misc 16 Important You are here
Last updated at Jan. 27, 2020 by Teachoo
Misc 16 In a survey it was found that 21 people liked product A, 26 liked product B & 29 liked product C. If 14 people liked products A & B, 12 people liked products C & A, 14 people liked products B & C and 8 liked all the three products. Find how many liked product C only. Let A, B, C be the set of people who like product A, product B & product C respectively Number of people who liked product A = n(A)= 21, Number of people who liked product B = n(B)= 26, Number of people who liked product C = n(C) = 29, Number of people who liked product A and B = n(A ∩ B) = 14, Number of people who liked product C and A = n(C ∩ A) = 12, Number of people who liked product B and C = n(B ∩ C) = 14, Number of people who liked all three products A ,B and C = n(A ∩ B ∩ C) = 8 We have to find how many people liked product C only. Let us draw a Venn diagram Let a denote number of people who liked product A & B but not C. Let b denote number of people who liked product A & C but not B. Let c denote number of people who liked product B & C but not A. Let d denote the number of people who liked all three products. Number of people who liked product C only = n(C) – b – d – c Now, d = n(A ∩ B ∩ C) = 8 Given n(A ∩ C) = 12 b + d = 12 Putting d = 8 b + 8 = 12 b = 12 – 8 b = 4 Similarly, n(B ∩ C) = 14 c + d = 14 Putting d = 8 c + 8 = 14 c = 14 – 8 c = 6 Number of people who liked product C only = n(C) – b – d – c = 29 – 4 – 8 – 6 = 11 Hence, number of people who like product C only is 11