

Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii) Important
Misc 2 (iv)
Misc 2 (v)
Misc 2 (vi) Important
Misc 3
Misc 4 Important
Misc 5
Misc 6 Deleted for CBSE Board 2023 Exams
Misc 7 Important Deleted for CBSE Board 2023 Exams
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 You are here
Misc 12 Important
Misc 13 Important
Misc 14
Misc 15 Important
Misc 16 Important
Last updated at March 22, 2023 by Teachoo
Misc 11 Let A and B be sets. If A ∩ X = B ∩ X = ∅ and A ∪ X = B ∪ X for some set X, show that A = B. (Hints: A = A ∩ (A ∪ X), B = B ∩ (B ∪ X) and use distributive law) Given: Let A and B be two sets such that A ∩ X = B ∩ X = ∅ and A ∪ X = B ∪ X for some set X. To prove: A = B Proof: Let A = A ∩ (A ∪ X) A = A ∩ (B ∪ X) Let A = A ∩ (A ∪ X) Given A ∪ X = B ∪ X A = A ∩ (B ∪ X) Using distributive law : A ∩ (B ∪ C)= (A ∩ B) ∪ (A ∩ C) = (A ∩ B) ∪ (A ∩ X) As A ∩ X = ∅ given = (A ∩ B) ∪ ∅ A = A ∩ B Let B = B ∩ (B ∪ X) Given A ∪ X = B ∪ X B = B ∩ (A ∪ X) Using distributive law: A ∪ (B ∩ C)= (A ∩ B) ∪ (A ∩ C) = (B ∩ A) ∪ (B ∩ X) As B ∩ X = Φ = (B ∩ A) ∪ Φ B = B ∩ A B = A ∩ B From (1) and (2), A = A ∩ B & B = A ∩ B ∴ A = B Hence proved