Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Miscellaneous

Misc 1

Misc 2 (i)

Misc 2 (ii) Important

Misc 2 (iii) Important

Misc 2 (iv)

Misc 2 (v)

Misc 2 (vi) Important

Misc 3

Misc 4 Important

Misc 5

Misc 6 Deleted for CBSE Board 2023 Exams You are here

Misc 7 Important Deleted for CBSE Board 2023 Exams

Misc 8 Important

Misc 9 Important

Misc 10

Misc 11

Misc 12 Important

Misc 13 Important

Misc 14

Misc 15 Important

Misc 16 Important

Last updated at Sept. 3, 2021 by Teachoo

Misc 6 Assume that P (A) = P (B). Show that A = B. In order to prove A = B, we should prove A is a subset of B i.e. A ⊂ B & B is a subset of A i.e. B ⊂ A Set A is an element of power set of A as every set is a subset (Eg: for set A = {0, 1} , P(A) = { ∅ , {0}, {1}, {0, 1} } So, A is in P(A)) i.e. A ∈ P(A) ⇒ A ∈ P(B) If set A is in power set of B, set A is a subset of B ∴ A ⊂ B ⊂ Subset A ⊂ B (All elements of set A in set B) Similarly, We can prove B ⊂ A Now since A ⊂ B & B ⊂ A ∴ A = B Hence proved