web analytics

Misc 10 - Show that A B = A C need not imply B = C - Chapter 1 - Miscellaneous

  1. Chapter 1 Class 11 Sets
  2. Serial order wise
Ask Download

Transcript

Misc 10, Show that A ∩ B = A ∩ C need not imply B = C. We have to prove false, so we take a example It is given that A ∩ B = A ∩ C i.e. Common element in set A & B = Common element in set A & C Let A = {0, 1}, B = {0, 2, 3}, and C = {0, 4, 5} A ∩ B = {0} and A ∩ C = {0} Here, A ∩ B = A ∩ C = {0} But B ≠ C as 2 is in set B, but not in A Hence proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail