Find the particular solution of the following differential equation, given that y = 0 when π‘₯ = πœ‹/4 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯ 2/(1 + sin⁑π‘₯ )

This question is similar to Example 22 - Chapter 9 Class 12 - Differential EquationsΒ 

[Term 2] Find particular solution, y = 0 when x = πœ‹/4, of dy/dx + yco - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)

part 2 - Question 8 (Choice 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 8 (Choice 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 4 - Question 8 (Choice 2) - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Remove Ads

Transcript

Question 8 (Choice 2) Find the particular solution of the following differential equation, given that y = 0 when π‘₯ = πœ‹/4 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯= 2/(1 + sin⁑π‘₯ ) 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯= 2/(1 + sin⁑π‘₯ ) Differential equation is of the form 𝑑𝑦/𝑑π‘₯+𝑃𝑦=𝑄 where P = cot x & Q = 𝟐/(𝟏 + π’”π’Šπ’β‘π’™ ) Now, IF = 𝑒^∫1▒〖𝑃 𝑑π‘₯γ€— IF = 𝑒^∫1β–’γ€–cot⁑π‘₯ 𝑑π‘₯γ€— IF = 〖𝑒^π₯𝐨𝐠⁑𝐬𝐒𝐧⁑𝒙 γ€—^" " IF = sin x Solution is y (IF) =∫1β–’γ€–(𝑄×𝐼𝐹) 𝑑π‘₯+𝑐〗 y sin x = ∫1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ )Γ— π’”π’Šπ’ 𝒙 𝒅𝒙〗 + C y sin x = 2∫1β–’γ€–(𝑠𝑖𝑛 π‘₯)/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2∫1β–’γ€–((1 + 𝑠𝑖𝑛 π‘₯ βˆ’ 1))/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2∫1β–’γ€–((1 + 𝑠𝑖𝑛 π‘₯))/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€—βˆ’2∫1β–’γ€–1/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 𝟐∫1β–’π’…π’™βˆ’πŸβˆ«1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ ) 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ ) 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–1/(1 + 𝑠𝑖𝑛⁑π‘₯ ) Γ—(𝟏 βˆ’ 𝐬𝐒𝐧⁑𝒙)/(𝟏 βˆ’ π’”π’Šπ’β‘π’™ ) 𝑑π‘₯γ€— + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–(1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin^2⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–(𝟏 βˆ’ π’”π’Šπ’β‘π’™)/γ€–πœπ¨π¬γ€—^πŸβ‘π’™ 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2[∫1β–’γ€–1/γ€–π‘π‘œπ‘ γ€—^2⁑π‘₯ 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–sin⁑π‘₯/γ€–π‘π‘œπ‘ γ€—^2⁑π‘₯ 𝑑π‘₯γ€—] + C y sin x = 2π‘₯βˆ’2[∫1β–’γ€–sec^2⁑π‘₯ 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–sin⁑π‘₯/(π‘π‘œπ‘  π‘₯) Γ—1/cos⁑π‘₯ 𝑑π‘₯γ€—] + C y sin x = 2π‘₯βˆ’2[∫1▒〖〖𝒔𝒆𝒄〗^πŸβ‘π’™ π’…π’™γ€—βˆ’βˆ«1β–’γ€–π­πšπ§β‘π’™ π¬πžπœβ‘π’™ 𝒅𝒙〗] + C y sin x = πŸπ’™βˆ’πŸ π­πšπ§β‘π’™+𝟐 𝒔𝒆𝒄 𝒙 + C We need to find particular solution when y = 0 when π‘₯ = πœ‹/4 Putting y = 0 and 𝒙 = 𝝅/πŸ’ 0 Γ— sin 𝝅/πŸ’ = 2(𝝅/πŸ’)βˆ’2 tan⁑〖𝝅/πŸ’γ€—+2 𝑠𝑒𝑐 𝝅/πŸ’ + C 0 = πœ‹/2βˆ’2 Γ— 1+2√2 + C 2βˆ’2√2βˆ’πœ‹/2 = C C = 𝟐(πŸβˆ’βˆšπŸ)βˆ’π…/𝟐 Thus, our particular solution is y sin x = πŸπ’™βˆ’πŸ π­πšπ§β‘π’™+𝟐 𝒔𝒆𝒄 𝒙 + 𝟐(πŸβˆ’βˆšπŸ)βˆ’π…/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo