Question 7 - CBSE Class 12 Sample Paper for 2022 Boards (For Term 2) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards
Last updated at Dec. 14, 2024 by Teachoo
Find ∫1▒γ(x + 1)/((x^2 + 1) x) dxγ
This question is similar to
Ex 13.2, 2 - Chapter 13 Class 12
- Probability
Something went wrong!
The
video
couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.
Thanks for bearing with us!
Transcript
Question 7 Find β«1βγ(π₯ + 1)/((π₯^2 + 1) π₯) ππ₯γLet
(π₯ + 1)/((π₯^2 + 1) π₯) = (π¨π + π©)/((π^π + π) ) + πͺ/π
(π₯ + 1)/((π₯^2 + 1) π₯) = ((π΄π₯ + π΅)π₯ + πΆ(1 + π₯^2 ))/((π₯^2 + 1) π₯)
By cancelling denominator
π + π = (π¨π + π©)π + πͺ(π + π^π )
Putting π=π
0 + 1 = (π΄(0) + π΅) Γ 0 + πΆ(1 +0^2 )
1 = πΆ
πͺ = π
Putting π=π
1 + 1 = (π΄(1) + π΅) Γ 1 + πΆ(1 +1^2 )
2 = (π΄ + π΅) +2πΆ
Putting πΆ = 1
2 = (π΄ + π΅) +2 Γ 1
2 = (π΄ + π΅) +2
2β2 = (π΄ + π΅)
0 = π΄ + π΅
π¨=β π©
Putting π=βπ
β1 + 1 = (π΄(β1) + π΅) Γ β1 + πΆ(1 +γ(β1)γ^2 )
0 = β(βπ΄ + π΅) +πΆ Γ (1+1)
0 = β(βπ΄ + π΅) +2πΆ Putting π΄=β π΅
0 = β(π΅ + π΅) +2πΆ
0 = β2B +2πΆ
2B =2πΆ
B =πΆ
Putting πΆ = 1
π© = π
And, π΄=βπ΅
β΄ π¨=βπ
Thus, π΄=β1, π΅=1, πΆ = 1
So, we can write
(π + π)/((π^π + π) π) = (π΄π₯ + π΅)/((π₯^2 + 1) ) + πΆ/π₯
= ((β1)π₯ +1)/((π₯^2 + 1) ) + 1/π₯
= (βπ + π)/((π^π + π) ) + π/π
Therefore integrating
β«1β(π₯ + 1)/((π₯^2 + 1) π₯) ππ₯ = β«1β(βπ + π)/((π^π + π) ) ππ₯ + β«1β1/(π₯ ) ππ₯
= β«1β(βπ₯ + 1)/((π₯^2 + 1) ) ππ₯ + β«1β1/(π₯ ) ππ₯
= β«1β(βπ₯)/((π₯^2 + 1) ) ππ₯ + β«1β1/(π₯^2 + 1) ππ₯ + β«1β1/(π₯ ) ππ₯
= β«1β(βπ₯)/((π₯^2 + 1) ) ππ₯ + γπππ§γ^(βπ)β‘π + πππβ‘γ|π|γ+πΆ
= β«1β(βπ₯)/((π₯^2 + 1) ) ππ₯ + γπππ§γ^(βπ)β‘π + πππβ‘γ|π|γ+πΆ
Solving π1
I1 = β«1β(βπ₯)/(π₯^2 + 1) ππ₯
Let π = π^π+π
ππ‘/ππ₯ = 2π₯
ππ‘/2π₯ = ππ₯
Hence
β«1β(βπ₯)/(π₯^2 + 1) ππ₯ = β«1βγ(βπ₯)/π‘ . ππ‘/2π₯γ
= ββ«1βππ‘/2(π‘)
= (β1)/2 γlog γβ‘|π‘|+πΆ1
Putting back t = π₯^2+1
= (βπ)/π γπππ γβ‘|π^π+π|+πͺπ
Therefore integrating
β«1β(π₯ + 1)/((π₯^2 + 1) π₯) ππ₯ = (βπ)/π γπππ γβ‘|π^π+π| + γπππ§γ^(βπ)β‘π + πππβ‘γ|π|γ+πΆ
Show More