Find the particular solution of the following differential equation, given that y = 0 when π₯ = π/4ππ¦/ππ₯+π¦πππ‘π₯ 2/(1 + sin⁡π₯ )
This question is similar to Example 22 - Chapter 9 Class 12 - Differential Equations
CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)
CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)
Last updated at December 14, 2024 by Teachoo
This question is similar to Example 22 - Chapter 9 Class 12 - Differential Equations
Transcript
Question 8 (Choice 2) Find the particular solution of the following differential equation, given that y = 0 when π₯ = π/4 ππ¦/ππ₯+π¦πππ‘π₯= 2/(1 + sinβ‘π₯ ) ππ¦/ππ₯+π¦πππ‘π₯= 2/(1 + sinβ‘π₯ ) Differential equation is of the form ππ¦/ππ₯+ππ¦=π where P = cot x & Q = π/(π + πππβ‘π ) Now, IF = π^β«1βγπ ππ₯γ IF = π^β«1βγcotβ‘π₯ ππ₯γ IF = γπ^π₯π¨π β‘π¬π’π§β‘π γ^" " IF = sin x Solution is y (IF) =β«1βγ(πΓπΌπΉ) ππ₯+πγ y sin x = β«1βγπ/(π + πππβ‘π )Γ πππ π π πγ + C y sin x = 2β«1βγ(π ππ π₯)/(1 + π ππβ‘π₯ ) ππ₯γ + C y sin x = 2β«1βγ((1 + π ππ π₯ β 1))/(1 + π ππβ‘π₯ ) ππ₯γ + C y sin x = 2β«1βγ((1 + π ππ π₯))/(1 + π ππβ‘π₯ ) ππ₯γβ2β«1βγ1/(1 + π ππβ‘π₯ ) ππ₯γ + C y sin x = πβ«1βπ πβπβ«1βγπ/(π + πππβ‘π ) π πγ + C y sin x = 2π₯β2β«1βγπ/(π + πππβ‘π ) π πγ + C y sin x = 2π₯β2β«1βγ1/(1 + π ππβ‘π₯ ) Γ(π β π¬π’π§β‘π)/(π β πππβ‘π ) ππ₯γ + C y sin x = 2π₯β2β«1βγ(1 β sinβ‘π₯)/(1 β sin^2β‘π₯ ) ππ₯γ + C y sin x = 2π₯β2β«1βγ(π β πππβ‘π)/γππ¨π¬γ^πβ‘π π πγ + C y sin x = 2π₯β2[β«1βγ1/γπππ γ^2β‘π₯ ππ₯γββ«1βγsinβ‘π₯/γπππ γ^2β‘π₯ ππ₯γ] + C y sin x = 2π₯β2[β«1βγsec^2β‘π₯ ππ₯γββ«1βγsinβ‘π₯/(πππ π₯) Γ1/cosβ‘π₯ ππ₯γ] + C y sin x = 2π₯β2[β«1βγγπππγ^πβ‘π π πγββ«1βγπππ§β‘π π¬ππβ‘π π πγ] + C y sin x = ππβπ πππ§β‘π+π πππ π + C We need to find particular solution when y = 0 when π₯ = π/4 Putting y = 0 and π = π /π 0 Γ sin π /π = 2(π /π)β2 tanβ‘γπ /πγ+2 π ππ π /π + C 0 = π/2β2 Γ 1+2β2 + C 2β2β2βπ/2 = C C = π(πββπ)βπ /π Thus, our particular solution is y sin x = ππβπ πππ§β‘π+π πππ π + π(πββπ)βπ /π