Find values of k for which the quadratic equation has equal roots - kx - Ex 4.3

part 2 - Ex 4.3, 2 (ii) - Ex 4.3 - Serial order wise - Chapter 4 Class 10 Quadratic Equations

Remove Ads

Transcript

Ex 4.3, 2 Find the values of k for each of the following quadratic equations, so that they have two equal roots. (ii) kx (x – 2) + 6 = 0 kx (x – 2) + 6 = 0 kx2 – 2kx + 6 = 0 Comparing equation with ax2 + bx + c = 0 a = k, b = – 2k, c = 6 Since the equation has 2 equal roots D = 0 b2 – 4ac = 0 Putting values (–2k)2 – 4×𝒌×𝟔=𝟎 4k2 – 24k = 0 4k(k – 6) = 0 4k (k – 6) = 0 So, k = 0 & k = 6 For k = 0 The equation becomes kx2 – 2kx + 6 = 0 0(x2) – 2(0)x + 6 = 0 0 – 0 + 6 = 0 6 = 0 Which is not correct So, k = 0 is not possible For k = 6, The equation becomes kx2 – 2kx + 6 = 0 6x2 – 2(6)x + 6 = 0 which is possible So, k = 6 is possible

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo