A class XII student appearing for a competitive examination was asked to attempt the following questions.

Let a , b  and c  ๐‘e three non zero vectors.

A class XII student appearing for a competitive examination was asked - Case Based Questions (MCQ)

Question 1
If a   and b  are such that|a + b | = |a – b | then
(a) a ⊥ b โƒ—
(b) a ∥ b โƒ—
(c) a = b 
(d) None of these

part 2 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 10 Class 12 Vector Algebra

Question 2
If a = i ฬ‚ – 2j ฬ‚, b = 2i ฬ‚ + j ฬ‚ + 3k ฬ‚  then evaluate (2a + b) โˆ™ [(a + b) × (a − 2b)]
(a) 0
(b) 4
(c) 3
(d) 2

part 3 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 10 Class 12 Vector Algebra

Question 3
If a and b are unit vectors and ๐œƒ be the angle between them the, |a โƒ— -b โƒ— | is
(a) sin θ/2
(b) 2 sin θ/2
(c) 2 cos θ/2
(d) cos θ/2

part 4 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 10 Class 12 Vector Algebra

Question 4
Let a, b  and c be unit vectors such that a โˆ™ b = a โˆ™ c = 0 and angle between b and c โƒ— is π/6 then a =
(a) 2(b × c)
(b) –2 (b × c)
(c) ±2 (b × c)
(d) 2 (b ± c)

part 5 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 10 Class 12 Vector Algebra

Question 5
The area of the parallelogram formed by a and b as diagonals is
(a) 70
(b) 35
(c) √70/2
(d) √70

part 6 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 10 Class 12 Vector Algebra

Remove Ads

Transcript

Question A class XII student appearing for a competitive examination was asked to attempt the following questions. Let ๐‘Ž โƒ—, ๐‘ โƒ— and ๐‘ โƒ— ๐‘๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ non zero vectors. Question 1 If ๐‘Ž โƒ— and ๐‘ โƒ— are such that|๐‘Ž โƒ— + ๐‘ โƒ—| = |๐‘Ž โƒ— โ€“ ๐‘ โƒ—| then (a) ๐‘Ž โƒ— โŠฅ๐‘ โƒ— (b) ๐‘Ž โƒ—โˆฅ๐‘ โƒ— (c) ๐‘Ž โƒ—=๐‘ โƒ— (d) None of these|๐‘Ž โƒ— + ๐‘ โƒ—|2 = |๐‘Ž โƒ— โ€“ ๐‘ โƒ—|2 2.๐‘Ž โƒ— โˆ™ ๐‘ โƒ— = 0, ๐‘Ž โƒ—โŠฅ๐‘ โƒ— Question 2 If ๐‘Ž โƒ— = ๐‘– ฬ‚ โ€“ 2๐‘— ฬ‚, ๐‘ โƒ— = 2๐‘– ฬ‚ + ๐‘— ฬ‚ + 3๐‘˜ ฬ‚ then evaluate (2๐‘Ž โƒ— + ๐‘ โƒ—) โˆ™ [(๐‘Ž โƒ— + ๐‘ โƒ—) ร— (๐‘Ž โƒ— โˆ’ 2๐‘ โƒ—)] (a) 0 (b) 4 (c) 3 (d) 2(a) 0 Question 3 If ๐‘Ž โƒ— and ๐‘ โƒ— are unit vectors and ๐œƒ be the angle between them the, |๐‘Ž โƒ— โˆ’๐‘ โƒ— | is (a) sin ๐œƒ/2 (b) 2 sin ๐œƒ/2 (c) 2 cos ๐œƒ/2 (d) cos ๐œƒ/2(b) 2 sin ๐œƒ/2 Question 4 Let ๐‘Ž โƒ—, ๐‘ โƒ— and ๐‘ โƒ— be unit vectors such that ๐‘Ž โƒ— โˆ™ ๐‘ โƒ— = ๐‘Ž โƒ— โˆ™ ๐‘ โƒ— = 0 and angle between ๐‘ โƒ— and ๐‘ โƒ— is ๐œ‹/6 then ๐‘Ž โƒ— = (a) 2(๐‘ โƒ— ร— ๐‘ โƒ— ) (b) โ€“2 (๐‘ โƒ— ร— ๐‘ โƒ— ) (c) ยฑ2 (๐‘ โƒ— ร— ๐‘ โƒ— ) (d) 2 (๐‘ โƒ—ยฑ๐‘ โƒ— )(c) ยฑ2 (๐‘ โƒ—ร—๐‘ โƒ— ) Question 5 The area of the parallelogram formed by ๐‘Ž โƒ— and ๐‘ โƒ— as diagonals is (a) 70 (b) 35 (c) โˆš70/2 (d) โˆš70โˆš70/2 sq. units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo