Last updated at Dec. 16, 2024 by Teachoo
Question 1 Let f : R → R be defined as f(x) = 10x+ 7. Find the function g : R → R such that gof= fog= IR Here g is the inverse of f Finding inverse of f f(x) = 10x + 7 Let f(x) = y y = 10x + 7 y – 7 = 10x 10x = y – 7 x = (𝒚 − 𝟕)/𝟏𝟎 Let g(y) = (𝒚 − 𝟕)/𝟏𝟎 where g: R → R Now, we have to check the condition gof = fog = IR Finding gof gof = g(f(x)) = g(10x + 7) = ((10𝑥 + 7) − 7)/10 = (10𝑥 + 7 − 7)/10 = 10𝑥/10 = x = IR Finding fog fog = f(g(y)) = f((𝑦 − 7)/10) = 10 ((𝑦 − 7)/10) + 7 = y – 7 + 7 = y + 0 = y = IR Since gof = fog = IR, ∴ f is invertible & Inverse of f = g(y) = (𝒚 − 𝟕)/𝟏𝟎
Miscellaneous
Misc 2
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 (MCQ) Important
Misc 7 (MCQ) Important
Question 1 You are here
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7 (i) Important
Question 7 (ii)
Question 8
Question 9 Important
Question 10 Important
Question 11
Question 12 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo