Check sibling questions


Transcript

Question 8 Form the differential equation of the family of ellipses having foci on ๐‘ฆโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  and center at origin. Equation of ellipse having center at origin (0, 0) & foci on y-axis is ๐‘ฅ^2/๐‘^2 +๐‘ฆ^2/๐‘Ž^2 =1 โˆด Differentiating Both Sides w.r.t. ๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ [๐‘ฅ^2/๐‘^2 +๐‘ฆ^2/๐‘Ž^2 ] = (๐‘‘(1))/๐‘‘๐‘ฅ 1/๐‘^2 [2๐‘ฅ]+1/๐‘Ž^2 [2๐‘ฆ] ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0 2๐‘ฅ/๐‘^2 +2๐‘ฆ/๐‘Ž^2 . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0 Since it has two variables, we will differentiate twice 2๐‘ฆ/๐‘Ž^2 ๐‘ฆโ€ฒ=(โˆ’2๐‘ฅ)/๐‘^2 ๐‘ฆ/๐‘Ž^2 ๐‘ฆโ€ฒ=(โˆ’๐‘ฅ)/๐‘^2 (๐‘ฆ/๐‘ฅ)๐‘ฆโ€ฒ=(โˆ’๐‘Ž^2)/ใ€– ๐‘ใ€—^2 (๐‘ฆ๐‘ฆ^โ€ฒ)/๐‘ฅ = (โˆ’๐‘Ž^2)/๐‘^2 Again differentiating both sides w.r.t. x ((๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’ (๐‘‘๐‘ฅ/๐‘‘๐‘ฅ)(๐‘ฆ๐‘ฆ^โ€ฒ ))/๐‘ฅ^2 =0 (๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’ (1)(๐‘ฆ๐‘ฆ^โ€ฒ )=๐ŸŽร—๐’™^๐Ÿ (๐‘ฆ๐‘ฆ^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=๐ŸŽ (Using Quotient rule and Diff. of constant is 0) (๐’š๐’š^โ€ฒ )^โ€ฒ ๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 (๐’š^โ€ฒ ๐’š^โ€ฒ+๐’š๐’šโ€ฒโ€ฒ)๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 (ใ€–๐‘ฆ^โ€ฒใ€—^2+๐‘ฆ๐‘ฆโ€ฒโ€ฒ)๐‘ฅ โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 ๐‘ฅใ€–๐‘ฆ^โ€ฒใ€—^2+๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 ๐’™๐’š๐’š^โ€ฒโ€ฒ+๐’™ใ€–๐’š^โ€ฒใ€—^๐Ÿโˆ’๐’š๐’š^โ€ฒ=๐ŸŽ (Using Product rule)

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo