Check sibling questions


Transcript

Question 6 Form the differential equation of the family of circle touching the ๐‘ฆโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  at origin. General Equation of Circle (๐‘ฅโˆ’๐‘Ž)^2+(๐‘ฆโˆ’๐‘)^2=๐‘Ÿ^2 where Centre at (๐‘Ž , ๐‘) and Radius is r If circle touches y-axis at origin, Center will be at x-axis So, Center = (a, 0) & Radius = a Thus, equation of circle becomes (๐‘ฅโˆ’๐‘Ž)^2+(๐‘ฆโˆ’0)^2=๐‘Ž^2 (๐‘ฅโˆ’๐‘Ž)^2+๐‘ฆ^2=๐‘Ž^2 ๐‘ฅ^2+๐‘Ž^2โˆ’2๐‘Ž๐‘ฅ+๐‘ฆ^2=๐‘Ž^2 ๐‘ฅ^2โˆ’2๐‘Ž๐‘ฅ+๐‘ฆ^2=๐‘Ž^2โˆ’๐‘Ž^2 ๐‘ฅ^2โˆ’2๐‘Ž๐‘ฅ+๐‘ฆ^2=0 2๐‘Ž๐‘ฅ=๐‘ฅ^2+๐‘ฆ^2 Differentiating Both Sides w.r.t. ๐‘ฅ (๐‘‘(2๐‘Ž๐‘ฅ))/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^2 )/๐‘‘๐‘ฅ+๐‘‘(๐‘ฆ^2 )/๐‘‘๐‘ฅ 2a = 2x + 2y ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ a = x + yyโ€™ โ€ฆ(1) โ€ฆ(2) From (1) 2๐‘Ž๐‘ฅ=๐‘ฅ^2+๐‘ฆ^2 Putting value of a from (2) 2๐‘ฅ(๐‘ฅ+๐‘ฆ๐‘ฆ^โ€ฒ)=๐‘ฅ^2+๐‘ฆ^2 2๐‘ฅ^2+2๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒ=๐‘ฅ^2+๐‘ฆ^2 2๐‘ฅ^2โˆ’๐‘ฅ^2+2๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒ=+๐‘ฆ^2 ๐Ÿ๐’™๐’š๐’š^โ€ฒ+๐’™^๐Ÿ=๐’š^๐Ÿ is the required differential equation.

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo