Check sibling questions


Transcript

Question 4 Form a differential equation representing the given family of curves by eliminating arbitrary constants ๐‘Ž and ๐‘. ๐‘ฆ=๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) The Number Of Times We Differentiate Is Equal To Number Of Constants ๐‘ฆ=๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) โˆด Differentiating Both Sides w.r.t. ๐‘ฅ ๐‘ฆ^โ€ฒ=๐‘‘/๐‘‘๐‘ฅ [๐‘’^2๐‘ฅ [๐‘Ž+๐‘๐‘ฅ]] ๐‘ฆ^โ€ฒ=๐‘‘[๐‘’^2๐‘ฅ ]/๐‘‘๐‘ฅ.[๐‘Ž+๐‘๐‘ฅ]+๐‘’^(2๐‘ฅ ) ๐‘‘[๐‘Ž + ๐‘๐‘ฅ]/๐‘‘๐‘ฅ ๐‘ฆ^โ€ฒ=ใ€–2๐‘’ใ€—^2๐‘ฅ [๐‘Ž+๐‘๐‘ฅ]+๐‘’^2๐‘ฅ.๐‘ ๐‘ฆ^โ€ฒ=๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘] Again differentiating w.r.t.x ๐‘ฆ^โ€ฒ=๐‘‘/๐‘‘๐‘ฅ (๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]) yโ€ = (๐‘‘ (๐‘’^2๐‘ฅ))/๐‘‘๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅ (๐‘‘ [2๐‘Ž+2๐‘๐‘ฅ+๐‘])/๐‘‘๐‘ฅ yโ€ = 2๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅร—2๐‘ Putting yโ€™=๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘] yโ€ = 2yโ€™ + ๐‘’^2๐‘ฅร—2๐‘ yโ€ = 2yโ€™ + 2๐‘’^2๐‘ฅ ๐‘ yโ€ โˆ’ 2yโ€™ = 2๐‘’^2๐‘ฅ ๐‘ Also, yโ€™ โˆ’ 2y = ๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ +๐‘]โˆ’2๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) yโ€™ โˆ’ 2y = 2a๐‘’^2๐‘ฅ+2๐‘๐‘ฅ ๐‘’^2๐‘ฅ+๐‘’^2๐‘ฅ ๐‘โˆ’2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅโˆ’2๐‘๐‘ฅ ๐‘’^2๐‘ฅ yโ€™ โˆ’ 2y = (2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅโˆ’2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅ )+(2๐‘๐‘ฅ ๐‘’^2๐‘ฅโˆ’2๐‘๐‘ฅ ๐‘’^2๐‘ฅ )+๐‘’^2๐‘ฅ ๐‘ yโ€™ โˆ’ 2y = 0 + 0 + ๐‘’^2๐‘ฅ ๐‘ yโ€™ โˆ’ 2y = ๐‘’^2๐‘ฅ ๐‘ Now ((1))/((2)) , (๐‘ฆ" โˆ’ 2๐‘ฆ)/(๐‘ฆ^(โ€ฒ ) โˆ’ 2๐‘ฆ)=(2๐‘’^2๐‘ฅ ๐‘)/(๐‘’^2๐‘ฅ ๐‘) (๐‘ฆ^โ€ฒโ€ฒ โˆ’ 2๐‘ฆ^โ€ฒ)/(๐‘ฆ^โ€ฒโˆ’2๐‘ฆ)= 2 yโ€ โˆ’ 2yโ€™ = 2(yโ€™ โˆ’ 2y) yโ€ โˆ’ 2yโ€™ = 2yโ€™ โˆ’ 4y yโ€ โˆ’ 2yโ€™ โˆ’ 2yโ€™ + 4y = 0 yโ€ โˆ’ 4yโ€™ + 4y = 0 (As ๐‘ฆ=๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) ) Again differentiating w.r.t.x yโ€ =๐‘‘/๐‘‘๐‘ฅ (๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]) yโ€ = (๐‘‘ (๐‘’^2๐‘ฅ))/๐‘‘๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅ (๐‘‘ [2๐‘Ž+2๐‘๐‘ฅ+๐‘])/๐‘‘๐‘ฅ yโ€ = 2๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅร—2๐‘ Putting yโ€™=๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘] yโ€ = 2yโ€™ + ๐‘’^2๐‘ฅร—2๐‘ yโ€ = 2yโ€™ + 2๐‘’^2๐‘ฅ ๐‘ yโ€ โˆ’ 2yโ€™ = 2๐‘’^2๐‘ฅ ๐‘ โ€ฆ(1) Differentiating again w.r.t x ๐‘ฆ^โ€ฒโ€ฒโˆ’2๐‘ฆ^โ€ฒ=๐‘‘(๐‘’^2๐‘ฅ.๐‘)/๐‘‘๐‘ฅ ๐‘ฆ^โ€ฒโ€ฒโˆ’2๐‘ฆ^โ€ฒ=2๐‘’^2๐‘ฅ ๐‘ Dividing (1) and (2) i.e. ((2))/((1)) , (๐‘ฆ" โˆ’ 2๐‘ฆ)/(๐‘ฆ^(โ€ฒ ) โˆ’ 2๐‘ฆ)=(2๐‘’^2๐‘ฅ ๐‘)/(๐‘’^2๐‘ฅ ๐‘) (๐‘ฆ^โ€ฒโ€ฒ โˆ’ 2๐‘ฆ^โ€ฒ)/(๐‘ฆ^โ€ฒโˆ’2๐‘ฆ)= 2 yโ€ โˆ’ 2yโ€™ = 2(yโ€™ โˆ’ 2y) โ€ฆ(2) yโ€ โˆ’ 2yโ€™ = 2yโ€™ โˆ’ 4y yโ€ โˆ’ 2yโ€™ โˆ’ 2yโ€™ + 4y = 0 yโ€ โˆ’ 4yโ€™ + 4y = 0 is the required equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo