Question 4 - Forming Differential equations - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 4 Form a differential equation representing the given family of curves by eliminating arbitrary constants ๐ and ๐. ๐ฆ=๐^2๐ฅ (๐+๐๐ฅ) The Number Of Times We Differentiate Is Equal To Number Of Constants ๐ฆ=๐^2๐ฅ (๐+๐๐ฅ) โด Differentiating Both Sides w.r.t. ๐ฅ ๐ฆ^โฒ=๐/๐๐ฅ [๐^2๐ฅ [๐+๐๐ฅ]] ๐ฆ^โฒ=๐[๐^2๐ฅ ]/๐๐ฅ.[๐+๐๐ฅ]+๐^(2๐ฅ ) ๐[๐ + ๐๐ฅ]/๐๐ฅ ๐ฆ^โฒ=ใ2๐ใ^2๐ฅ [๐+๐๐ฅ]+๐^2๐ฅ.๐ ๐ฆ^โฒ=๐^2๐ฅ [2๐+2๐๐ฅ+๐] Again differentiating w.r.t.x ๐ฆ^โฒ=๐/๐๐ฅ (๐^2๐ฅ [2๐+2๐๐ฅ+๐]) yโ = (๐ (๐^2๐ฅ))/๐๐ฅ [2๐+2๐๐ฅ+๐]+๐^2๐ฅ (๐ [2๐+2๐๐ฅ+๐])/๐๐ฅ yโ = 2๐^2๐ฅ [2๐+2๐๐ฅ+๐]+๐^2๐ฅร2๐ Putting yโ=๐^2๐ฅ [2๐+2๐๐ฅ+๐] yโ = 2yโ + ๐^2๐ฅร2๐ yโ = 2yโ + 2๐^2๐ฅ ๐ yโ โ 2yโ = 2๐^2๐ฅ ๐ Also, yโ โ 2y = ๐^2๐ฅ [2๐+2๐๐ฅ +๐]โ2๐^2๐ฅ (๐+๐๐ฅ) yโ โ 2y = 2a๐^2๐ฅ+2๐๐ฅ ๐^2๐ฅ+๐^2๐ฅ ๐โ2๐ใ ๐ใ^2๐ฅโ2๐๐ฅ ๐^2๐ฅ yโ โ 2y = (2๐ใ ๐ใ^2๐ฅโ2๐ใ ๐ใ^2๐ฅ )+(2๐๐ฅ ๐^2๐ฅโ2๐๐ฅ ๐^2๐ฅ )+๐^2๐ฅ ๐ yโ โ 2y = 0 + 0 + ๐^2๐ฅ ๐ yโ โ 2y = ๐^2๐ฅ ๐ Now ((1))/((2)) , (๐ฆ" โ 2๐ฆ)/(๐ฆ^(โฒ ) โ 2๐ฆ)=(2๐^2๐ฅ ๐)/(๐^2๐ฅ ๐) (๐ฆ^โฒโฒ โ 2๐ฆ^โฒ)/(๐ฆ^โฒโ2๐ฆ)= 2 yโ โ 2yโ = 2(yโ โ 2y) yโ โ 2yโ = 2yโ โ 4y yโ โ 2yโ โ 2yโ + 4y = 0 yโ โ 4yโ + 4y = 0 (As ๐ฆ=๐^2๐ฅ (๐+๐๐ฅ) ) Again differentiating w.r.t.x yโ =๐/๐๐ฅ (๐^2๐ฅ [2๐+2๐๐ฅ+๐]) yโ = (๐ (๐^2๐ฅ))/๐๐ฅ [2๐+2๐๐ฅ+๐]+๐^2๐ฅ (๐ [2๐+2๐๐ฅ+๐])/๐๐ฅ yโ = 2๐^2๐ฅ [2๐+2๐๐ฅ+๐]+๐^2๐ฅร2๐ Putting yโ=๐^2๐ฅ [2๐+2๐๐ฅ+๐] yโ = 2yโ + ๐^2๐ฅร2๐ yโ = 2yโ + 2๐^2๐ฅ ๐ yโ โ 2yโ = 2๐^2๐ฅ ๐ โฆ(1) Differentiating again w.r.t x ๐ฆ^โฒโฒโ2๐ฆ^โฒ=๐(๐^2๐ฅ.๐)/๐๐ฅ ๐ฆ^โฒโฒโ2๐ฆ^โฒ=2๐^2๐ฅ ๐ Dividing (1) and (2) i.e. ((2))/((1)) , (๐ฆ" โ 2๐ฆ)/(๐ฆ^(โฒ ) โ 2๐ฆ)=(2๐^2๐ฅ ๐)/(๐^2๐ฅ ๐) (๐ฆ^โฒโฒ โ 2๐ฆ^โฒ)/(๐ฆ^โฒโ2๐ฆ)= 2 yโ โ 2yโ = 2(yโ โ 2y) โฆ(2) yโ โ 2yโ = 2yโ โ 4y yโ โ 2yโ โ 2yโ + 4y = 0 yโ โ 4yโ + 4y = 0 is the required equation
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo