Check sibling questions


Transcript

Question 3 Form a differential equation representing the given family of curves by eliminating arbitrary constants ๐‘Ž and ๐‘. ๐‘ฆ=๐‘Ž ๐‘’^3๐‘ฅ+๐‘ ๐‘’^(โˆ’2๐‘ฅ) Since it has two variables, we will differentiate twice ๐‘ฆ=๐‘Ž ๐‘’^3๐‘ฅ+๐‘ ๐‘’^(โˆ’2๐‘ฅ) โˆด Differentiating Both Sides w.r.t. ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘/๐‘‘๐‘ฅ [๐‘Ž๐‘’^3๐‘ฅ+๐‘ ๐‘’^(โˆ’2๐‘ฅ) ] =๐‘Ž๐‘’^3๐‘ฅร—3+๐‘ ๐‘’^(โˆ’2๐‘ฅ)ร—(โˆ’2) =3๐‘Ž๐‘’^3๐‘ฅโˆ’2๐‘ ๐‘’^(โˆ’2๐‘ฅ) โˆด ๐‘ฆ^โ€ฒ=3๐‘Ž๐‘’^3๐‘ฅโˆ’2๐‘ ๐‘’^(โˆ’2๐‘ฅ) ...(1) ๐‘ฆ^โ€ฒ=3๐‘Ž๐‘’^3๐‘ฅโˆ’2๐‘ ๐‘’^(โˆ’2๐‘ฅ) Again differentiating w.r.t. ๐‘ฅ ๐‘ฆ^โ€ฒโ€ฒ=๐‘‘/๐‘‘๐‘ฅ [3๐‘Ž๐‘’^3๐‘ฅโˆ’2๐‘ ๐‘’^(โˆ’2๐‘ฅ) ] ๐‘ฆ^โ€ฒโ€ฒ=3๐‘Ž๐‘’^3๐‘ฅ (3)โˆ’2๐‘ ๐‘’^(โˆ’2๐‘ฅ) (โˆ’2) โˆด ๐‘ฆ^โ€ฒโ€ฒ=9๐‘Ž๐‘’^3๐‘ฅ+4๐‘ ๐‘’^(โˆ’2๐‘ฅ) Subtracting (2) From (1) ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ^โ€ฒ=9๐‘Ž๐‘’^3๐‘ฅ+4๐‘ ๐‘’^(โˆ’2๐‘ฅ)โˆ’3๐‘Ž๐‘’^3๐‘ฅ+2๐‘ ๐‘’^(โˆ’2๐‘ฅ) ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ^โ€ฒ=6๐‘Ž๐‘’^3๐‘ฅ+6๐‘ ๐‘’^(โˆ’2๐‘ฅ) ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ^โ€ฒ=6(๐‘Ž๐‘’^3๐‘ฅ+๐‘๐‘’^(โˆ’2๐‘ฅ)) ๐‘ฆ^โ€ฒโ€ฒโˆ’๐‘ฆ^โ€ฒ=6y ๐’š^โ€ฒโ€ฒโˆ’๐’š^โ€ฒโˆ’๐Ÿ”๐’š=๐ŸŽ is the required differential equation. (As y = ๐‘Ž^3๐‘ฅ + b๐‘’^3๐‘ฅ)

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo