Last updated at Dec. 16, 2024 by Teachoo
Theorem 6.8 (Pythagoras Theorem) : If a right triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides. Given: βABC right angle at B To Prove: γπ΄πΆγ^2= γπ΄π΅γ^2+γπ΅πΆγ^2 Construction: Draw BD β₯ AC Proof: Since BD β₯ AC Using Theorem 6.7: If a perpendicular is drawn from the vertex of the right angle of the a right triangle to the hypotenuse then triangle on both side of the perpendicular are similar to whole triangle and to each other. Ξ ADB βΌ Ξ ABC Since, sides of similar triangles are in the same ratio, β π΄π·/π΄π΅= π΄π΅/π΄πΆ βAD . AC= γπ΄π΅γ^2 Ξ BDC βΌ Ξ ABC Since, sides of similar triangles are in the same ratio β πΆπ·/π΅πΆ= π΅πΆ/π΄πΆ βCD . AC= γπ΅πΆγ^2 Adding (1) and (2) AD . AC + CD . AC = γπ΄π΅γ^2 + γπ΅πΆγ^2 AC (AD + CD) = γπ΄π΅γ^2 + γπ΅πΆγ^2 AC Γ AC = γπ΄π΅γ^2 + γπ΅πΆγ^2 γπ΄πΆγ^2 = γπ΄π΅γ^2 + γπ΅πΆγ^2 Hence Proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo