Question 6 - Miscellaneous - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 6 (Introduction) Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B ∀ A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*. Taking an example Let X = {1, 2, 3} P(X) = Power set of X = Set of all subsets of X = { 𝜙 , {1} , {2} , {3}, {1, 2} , {2, 3} , {1, 3}, {1, 2, 3} } A * X = A ∩ X = A X * A = X ∩ A = A Question 6 Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B ∀ A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*. Identity e is the identity of * if a * e = e * a = a A * X = A ∩ X = A X * A = X ∩ A = A So, A * X = A = X * A , for all A ∈ P (X) Thus, X is the identity element for the given binary operation *. Invertible An element a in set is invertible if, there is an element in set such that , a * b = e = b * a Here, e = X So, A * B = X = B * A i.e. A ∩ B = X This is only possible if A = B = X So, A * X = A = X * A , for all A ∈ P (X) Thus, X is the only invertible element in P(X) with respect to the given operation*.
Miscellaneous
Misc 2
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 (MCQ) Important
Misc 7 (MCQ) Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important You are here
Question 7 (i) Important
Question 7 (ii)
Question 8
Question 9 Important
Question 10 Important
Question 11
Question 12 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo