Misc 1 - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 1 Show that function f: R โ {x โ R: โ1 < x < 1} defined by f(x) = x/(1 + |๐ฅ| ) , x โ R is one-one and onto function. f: R โ {x โ R: โ1 < x < 1} f(x) = x/(1 + |๐ฅ| ) We know that |๐ฅ| = {โ( ๐ฅ , ๐ฅโฅ0 @โ๐ฅ , ๐ฅ<0)โค So, ๐(๐ฅ)={โ(๐ฅ/(1 + ๐ฅ), ๐ฅโฅ0@&๐ฅ/(1 โ ๐ฅ), ๐ฅ<0)โค For x โฅ 0 f(x1) = ๐ฅ_1/(1 + ๐ฅ_1 ) f(x2) = ๐ฅ_2/(1 + ๐ฅ_2 ) Putting f(x1) = f(x2) ๐ฅ_1/(1 + ๐ฅ_1 ) = ๐ฅ_2/(1 + ๐ฅ_2 ) ๐ฅ_1 (1 + ๐ฅ_2)= ๐ฅ_2 (1 + ๐ฅ_1) ๐ฅ_1+๐ฅ_1 ๐ฅ_2= ๐ฅ_2 +๐ฅ_2 ๐ฅ_1 ๐ฅ_1= ๐ฅ_2 For x < 0 f(x1) = ๐ฅ_1/(1 โ ๐ฅ_1 ) f(x2) = ๐ฅ_2/(1 โ ๐ฅ_2 ) Putting f(x1) = f(x2) ๐ฅ_1/(1 โ ๐ฅ_1 ) = ๐ฅ_2/(1 โ ๐ฅ_2 ) ๐ฅ_1 (1 โ ๐ฅ_2)= ๐ฅ_2 (1 โ ๐ฅ_1) ๐ฅ_1โ๐ฅ_1 ๐ฅ_2= ๐ฅ_2 โ๐ฅ_2 ๐ฅ_1 ๐ฅ_1= ๐ฅ_2 Hence, if f(x1) = f(x2) , then x1 = x2 โด f is one-one Checking onto ๐(๐ฅ)={โ(๐ฅ/(1 + ๐ฅ), ๐ฅโฅ0@&๐ฅ/(1 โ ๐ฅ), ๐ฅ<0)โค For x โฅ 0 f(x) = ๐ฅ/(1 + ๐ฅ) Let f(x) = y, "y = " ๐ฅ/(1 + ๐ฅ) y(1 + x) = x y + xy = x y = x โ xy x โ xy = y x(1 โ y) = y x = ๐ฆ/(1 โ ๐ฆ) For x < 0 f(x) = ๐ฅ/(1 โ ๐ฅ) Let f(x) = y "y = " ๐ฅ/(1 โ ๐ฅ) y(1 โ x) = x y โ xy = x y = x + xy x + xy = y x(1 + y) = y x = ๐ฆ/(1 + ๐ฆ) Thus, x = ๐ฆ/(1 โ ๐ฆ) , for x โฅ 0 & x = ๐ฆ/(1 + ๐ฆ) , for x < 0 Here, y โ {x โ R: โ1 < x < 1} i.e. Value of y is from โ1 to 1 , โ 1 < y < 1 If y = 1, x = ๐ฆ/(1 โ ๐ฆ) will be not defined, If y = โ1, x = ๐ฆ/(1 + ๐ฆ) will be not defined, But here โ 1 < y < 1 So, x is defined for all values of y. & x โ R โด f is onto Hence, f is one-one and onto.
Miscellaneous
Misc 2
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 (MCQ) Important
Misc 7 (MCQ) Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7 (i) Important
Question 7 (ii)
Question 8
Question 9 Important
Question 10 Important
Question 11
Question 12 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo