Check sibling questions

   


Transcript

Misc 1 Show that function f: R โ†’ {x โˆˆ R: โˆ’1 < x < 1} defined by f(x) = x/(1 + |๐‘ฅ| ) , x โˆˆ R is one-one and onto function. f: R โ†’ {x โˆˆ R: โˆ’1 < x < 1} f(x) = x/(1 + |๐‘ฅ| ) We know that |๐‘ฅ| = {โ–ˆ( ๐‘ฅ , ๐‘ฅโ‰ฅ0 @โˆ’๐‘ฅ , ๐‘ฅ<0)โ”ค So, ๐‘“(๐‘ฅ)={โ–ˆ(๐‘ฅ/(1 + ๐‘ฅ), ๐‘ฅโ‰ฅ0@&๐‘ฅ/(1 โˆ’ ๐‘ฅ), ๐‘ฅ<0)โ”ค For x โ‰ฅ 0 f(x1) = ๐‘ฅ_1/(1 + ๐‘ฅ_1 ) f(x2) = ๐‘ฅ_2/(1 + ๐‘ฅ_2 ) Putting f(x1) = f(x2) ๐‘ฅ_1/(1 + ๐‘ฅ_1 ) = ๐‘ฅ_2/(1 + ๐‘ฅ_2 ) ๐‘ฅ_1 (1 + ๐‘ฅ_2)= ๐‘ฅ_2 (1 + ๐‘ฅ_1) ๐‘ฅ_1+๐‘ฅ_1 ๐‘ฅ_2= ๐‘ฅ_2 +๐‘ฅ_2 ๐‘ฅ_1 ๐‘ฅ_1= ๐‘ฅ_2 For x < 0 f(x1) = ๐‘ฅ_1/(1 โˆ’ ๐‘ฅ_1 ) f(x2) = ๐‘ฅ_2/(1 โˆ’ ๐‘ฅ_2 ) Putting f(x1) = f(x2) ๐‘ฅ_1/(1 โˆ’ ๐‘ฅ_1 ) = ๐‘ฅ_2/(1 โˆ’ ๐‘ฅ_2 ) ๐‘ฅ_1 (1 โˆ’ ๐‘ฅ_2)= ๐‘ฅ_2 (1 โˆ’ ๐‘ฅ_1) ๐‘ฅ_1โˆ’๐‘ฅ_1 ๐‘ฅ_2= ๐‘ฅ_2 โˆ’๐‘ฅ_2 ๐‘ฅ_1 ๐‘ฅ_1= ๐‘ฅ_2 Hence, if f(x1) = f(x2) , then x1 = x2 โˆด f is one-one Checking onto ๐‘“(๐‘ฅ)={โ–ˆ(๐‘ฅ/(1 + ๐‘ฅ), ๐‘ฅโ‰ฅ0@&๐‘ฅ/(1 โˆ’ ๐‘ฅ), ๐‘ฅ<0)โ”ค For x โ‰ฅ 0 f(x) = ๐‘ฅ/(1 + ๐‘ฅ) Let f(x) = y, "y = " ๐‘ฅ/(1 + ๐‘ฅ) y(1 + x) = x y + xy = x y = x โ€“ xy x โ€“ xy = y x(1 โ€“ y) = y x = ๐‘ฆ/(1 โˆ’ ๐‘ฆ) For x < 0 f(x) = ๐‘ฅ/(1 โˆ’ ๐‘ฅ) Let f(x) = y "y = " ๐‘ฅ/(1 โˆ’ ๐‘ฅ) y(1 โ€“ x) = x y โ€“ xy = x y = x + xy x + xy = y x(1 + y) = y x = ๐‘ฆ/(1 + ๐‘ฆ) Thus, x = ๐‘ฆ/(1 โˆ’ ๐‘ฆ) , for x โ‰ฅ 0 & x = ๐‘ฆ/(1 + ๐‘ฆ) , for x < 0 Here, y โˆˆ {x โˆˆ R: โˆ’1 < x < 1} i.e. Value of y is from โ€“1 to 1 , โ€“ 1 < y < 1 If y = 1, x = ๐‘ฆ/(1 โˆ’ ๐‘ฆ) will be not defined, If y = โ€“1, x = ๐‘ฆ/(1 + ๐‘ฆ) will be not defined, But here โ€“ 1 < y < 1 So, x is defined for all values of y. & x โˆˆ R โˆด f is onto Hence, f is one-one and onto.

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo