Ex 5.7, 17 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.7, 17 (Method 1) If π¦= γ(γπ‘ππγ^(β1) π₯)γ^(2 ), show that γ(π₯^2+1)γ^(2 ) π¦2 + 2π₯ γ(π₯^2+1)γ^ π¦1 = 2 We have y = γ(γπ‘ππγ^(β1) π₯)γ^(2 ) Differentiating π€.π.π‘.π₯ yβ = 2 tanβ1 π₯ Γ 1/(1 + π₯^2 ) (1 + π₯^2) yβ = 2 tanβ1 π₯ Again differentiating π€.π.π‘.π₯ [π¦^β² (1+π₯^2 )]^β² = 2 Γ 1/(1 +γ π₯γ^2 ) [π¦^β² (1+π₯^2 )]^β² = 2/(1 + π₯^2 ) (tan^(β1)β‘π₯ )^β²=1/(1+π₯^2 ) Using product rule (1+π₯^2 )^β² + π¦^β²β² (1 + π₯^2) = 2/(1 + π₯^2 ) 2π₯ π¦^β²+π¦^β²β² (1 +π₯^2 ) = 2/(1 + π₯^2 ) 2π₯ π¦^β² (1 +π₯^2 )+π¦^β²β² (1 +π₯^2 )Γ(1 +π₯^2 ) = 2 2π₯(1 +π₯^2 ) π¦^β²+π¦^β²β² (1 +π₯^2 )^2 = 2 π^β²β² (π +π^π )^π+ππ(π +π^π ) π^β² = 2 Hence Proved Ex 5.7, 17 (Method 2) If π¦= γ(γπ‘ππγ^(β1) π₯)γ^(2 ), show that γ(π₯^2+1)γ^(2 ) π¦2 + 2π₯ γ(π₯^2+1)γ^ π¦1 = 2 We have y = γ(γπ‘ππγ^(β1) π₯)γ^(2 ) Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = (π (γ(γπ‘ππγ^(β1) π₯)γ^(2 )))/ππ₯ ππ¦/ππ₯ = 2 γπ‘ππγ^(β1) π₯ . π(γπ‘ππγ^(β1) π₯)/ππ₯ ππ¦/ππ₯ = 2 γπ‘ππγ^(β1) π₯ . 1/(1 +γ π₯γ^2 ) Hence, π¦1 = ππ¦/ππ₯ = (2 γπ‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 ) Again Differentiating π€.π.π‘.π₯ π/ππ₯ (ππ¦/ππ₯) = π/ππ₯ ((2 γπ‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )) (π^2 π¦)/(ππ₯^2 ) = 2 π/ππ₯ ((γπ‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )) (π^2 π¦)/(ππ₯^2 ) = 2 [(π(γπ‘ππγ^(β1) π₯)/ππ₯ . (1 +γ π₯γ^2 ) β π(1 +γ π₯γ^2 )/ππ₯ .γ π‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )^2 ] (π^2 π¦)/(ππ₯^2 ) = 2 [(1/(1 +γ π₯γ^2 ) . (1 +γ π₯γ^2 ) β (π(1)/ππ₯ + π(π₯^2 )/ππ₯) . γ π‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )^2 ] Using quotient Rule As, (π’/π£)^β²= (π’βπ£ β π£βπ’)/π£^2 where u = tan-1 x & v = 1 + x2 (π^2 π¦)/(ππ₯^2 ) = 2 [( 1 β (0 + 2π₯) γ π‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )^2 ] (π^2 π¦)/(ππ₯^2 ) = 2 [( 1 β 2π₯ .γ π‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )^2 ] Thus, π2 = 2 [( π β ππ .γ πππγ^(βπ) π)/(π +γ πγ^π )^π ] We need to show γ(π₯^2+1)γ^(2 ) π¦2 + 2π₯ γ(π₯^2+1)γ^ π¦1 = 2 Solving LHS γ(π₯^2+1)γ^(2 ) π¦2 + 2π₯ γ(π₯^2+1)γ^ π¦1 = γ(π₯^2+1)γ^(2 ). 2 [( 1 β 2π₯ .γ π‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )^2 ] + 2π₯ (π₯2+1) . ((2 γπ‘ππγ^(β1) π₯)/(1 +γ π₯γ^2 )) = 2 (1β2π₯ γπ‘ππγ^(β1) π₯) + 4π₯ γπ‘ππγ^(β1) π₯ = 2 β 4x γπππγ^(βπ) x + 4x γπππγ^(βπ) x = 2 Hence proved .
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo