Check sibling questions


Transcript

Ex 5.7, 16 (Method 1) If ๐‘’^๐‘ฆ (x+1)= 1, show that ๐‘‘2๐‘ฆ/๐‘‘๐‘ฅ2 = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 We need to show that ๐‘‘2๐‘ฆ/๐‘‘๐‘ฅ2 = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 ๐‘’^๐‘ฆ (x+1)= 1 Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘(๐‘’^๐‘ฆ (x+1))/๐‘‘๐‘ฅ = (๐‘‘(1))/๐‘‘๐‘ฅ ๐‘‘(๐‘’^๐‘ฆ (x + 1))/๐‘‘๐‘ฅ = 0 Using product rule in ey(x + 1) As (๐‘ข๐‘ฃ)โ€™= ๐‘ขโ€™๐‘ฃ + ๐‘ฃโ€™๐‘ข where u = ey & v = x + 1 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ . (x+1) + (๐‘‘ (x + 1))/๐‘‘๐‘ฅ . ๐‘’^๐‘ฆ = 0 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ (x+1) + ((๐‘‘(๐‘ฅ))/๐‘‘๐‘ฅ + (๐‘‘(1))/๐‘‘๐‘ฅ) . ๐‘’^๐‘ฆ = 0 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (x+1) + (1+0) . ๐‘’^๐‘ฆ = 0 ๐‘’^๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (x+1) + ๐‘’^๐‘ฆ = 0 ๐‘’^๐‘ฆ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) (x+1) = โˆ’ ๐‘’^๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ("โˆ’ " ๐‘’^๐‘ฆ)/(๐‘’^๐‘ฆ (๐‘ฅ + 1)) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ("โˆ’ " 1)/((๐‘ฅ + 1)) Again Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = ๐‘‘/๐‘‘๐‘ฅ (("โˆ’ " 1)/((๐‘ฅ+1) )) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’[((๐‘‘(1))/๐‘‘๐‘ฅ . (๐‘ฅ + 1) โˆ’ ๐‘‘(๐‘ฅ + 1)/๐‘‘๐‘ฅ . 1)/ใ€–(๐‘ฅ + 1)ใ€—^2 ] using Quotient Rule As, (๐‘ข/๐‘ฃ)^โ€ฒ= (๐‘ขโ€™๐‘ฃ โˆ’ ๐‘ฃโ€™๐‘ข)/๐‘ฃ^2 where U = 1 & V = x + 1 = โˆ’[(0 . (๐‘ฅ+1) โˆ’ ๐‘‘(๐‘ฅ+1)/๐‘‘๐‘ฅ . 1)/ใ€–(๐‘ฅ + 1)ใ€—^2 ] = โˆ’[(0 โˆ’ (1 + 0) . 1)/ใ€–(๐‘ฅ + 1)ใ€—^2 ] = โˆ’[(โˆ’1)/ใ€–(๐‘ฅ + 1)ใ€—^2 ] = 1/ใ€–(๐‘ฅ + 1)ใ€—^2 Hence (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = 1/ใ€–(๐‘ฅ + 1)ใ€—^2 = ((โˆ’1)/( ๐‘ฅ + 1))^2 = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 Hence proved Ex 5.7, 16 (Method 2) If ๐‘ฆ= ๐‘’^๐‘ฆ (x+1)= 1, show that ๐‘‘2๐‘ฆ/๐‘‘๐‘ฅ2 = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 If ๐‘ฆ= ๐‘’^๐‘ฆ (x+1)= 1 We need to show that ๐‘‘2๐‘ฆ/๐‘‘๐‘ฅ2 = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 ๐‘’^๐‘ฆ (๐‘ฅ+1)= 1 Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘(๐‘’^๐‘ฆ (x + 1))/๐‘‘๐‘ฅ = (๐‘‘(1))/๐‘‘๐‘ฅ ๐‘‘(๐‘’^๐‘ฆ (x + 1))/๐‘‘๐‘ฅ = 0 Using product rule in ey(x + 1) As (๐‘ข๐‘ฃ)โ€™= ๐‘ขโ€™๐‘ฃ + ๐‘ฃโ€™๐‘ข where u = ey & v = x + 1 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ . (x+1) + (๐‘‘ (x + 1))/๐‘‘๐‘ฅ . ๐‘’^๐‘ฆ = 0 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ (x+1) + ((๐‘‘(๐‘ฅ))/๐‘‘๐‘ฅ + (๐‘‘(1))/๐‘‘๐‘ฅ) . ๐‘’^๐‘ฆ = 0 (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (x+1) + (1+0) . ๐‘’^๐‘ฆ = 0 ๐‘’^๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (x+1) + ๐‘’^๐‘ฆ = 0 ๐‘’^๐‘ฆ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) (x+1) = โˆ’ ๐‘’^๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ("โˆ’ " ๐‘’^๐‘ฆ)/(๐‘’^๐‘ฆ (๐‘ฅ + 1)) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ("โˆ’ " 1)/((๐‘ฅ + 1)) Given, ๐‘’^๐‘ฆ (x + 1) = 1 ๐’†^๐’š = ๐Ÿ/(๐’™ + ๐Ÿ) Putting (2) in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ("โˆ’ " 1)/((๐‘ฅ + 1)) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’ ๐‘’^๐‘ฆ โ€ฆ(1) โ€ฆ(2) Again Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = (๐‘‘("โˆ’" ๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (๐‘‘(๐‘’^๐‘ฆ))/๐‘‘๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = "โˆ’ " ๐’†^๐’šร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐’…๐’š/๐’…๐’™ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (From (1) "โˆ’ " ๐‘’^๐‘ฆ " = " ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 Hence proved

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo