Ex 5.7, 16 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.7, 16 (Method 1) If ๐^๐ฆ (x+1)= 1, show that ๐2๐ฆ/๐๐ฅ2 = (๐๐ฆ/๐๐ฅ)^2 We need to show that ๐2๐ฆ/๐๐ฅ2 = (๐๐ฆ/๐๐ฅ)^2 ๐^๐ฆ (x+1)= 1 Differentiating ๐ค.๐.๐ก.๐ฅ ๐(๐^๐ฆ (x+1))/๐๐ฅ = (๐(1))/๐๐ฅ ๐(๐^๐ฆ (x + 1))/๐๐ฅ = 0 Using product rule in ey(x + 1) As (๐ข๐ฃ)โ= ๐ขโ๐ฃ + ๐ฃโ๐ข where u = ey & v = x + 1 (๐(๐^๐ฆ))/๐๐ฅ . (x+1) + (๐ (x + 1))/๐๐ฅ . ๐^๐ฆ = 0 (๐(๐^๐ฆ))/๐๐ฅ ร ๐๐ฆ/๐๐ฆ (x+1) + ((๐(๐ฅ))/๐๐ฅ + (๐(1))/๐๐ฅ) . ๐^๐ฆ = 0 (๐(๐^๐ฆ))/๐๐ฆ ร ๐๐ฆ/๐๐ฅ (x+1) + (1+0) . ๐^๐ฆ = 0 ๐^๐ฆ ร ๐๐ฆ/๐๐ฅ (x+1) + ๐^๐ฆ = 0 ๐^๐ฆ (๐๐ฆ/๐๐ฅ) (x+1) = โ ๐^๐ฆ ๐๐ฆ/๐๐ฅ = ("โ " ๐^๐ฆ)/(๐^๐ฆ (๐ฅ + 1)) ๐๐ฆ/๐๐ฅ = ("โ " 1)/((๐ฅ + 1)) Again Differentiating ๐ค.๐.๐ก.๐ฅ ๐/๐๐ฅ (๐๐ฆ/๐๐ฅ) = ๐/๐๐ฅ (("โ " 1)/((๐ฅ+1) )) (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = โ[((๐(1))/๐๐ฅ . (๐ฅ + 1) โ ๐(๐ฅ + 1)/๐๐ฅ . 1)/ใ(๐ฅ + 1)ใ^2 ] using Quotient Rule As, (๐ข/๐ฃ)^โฒ= (๐ขโ๐ฃ โ ๐ฃโ๐ข)/๐ฃ^2 where U = 1 & V = x + 1 = โ[(0 . (๐ฅ+1) โ ๐(๐ฅ+1)/๐๐ฅ . 1)/ใ(๐ฅ + 1)ใ^2 ] = โ[(0 โ (1 + 0) . 1)/ใ(๐ฅ + 1)ใ^2 ] = โ[(โ1)/ใ(๐ฅ + 1)ใ^2 ] = 1/ใ(๐ฅ + 1)ใ^2 Hence (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = 1/ใ(๐ฅ + 1)ใ^2 = ((โ1)/( ๐ฅ + 1))^2 = (๐๐ฆ/๐๐ฅ)^2 Hence proved Ex 5.7, 16 (Method 2) If ๐ฆ= ๐^๐ฆ (x+1)= 1, show that ๐2๐ฆ/๐๐ฅ2 = (๐๐ฆ/๐๐ฅ)^2 If ๐ฆ= ๐^๐ฆ (x+1)= 1 We need to show that ๐2๐ฆ/๐๐ฅ2 = (๐๐ฆ/๐๐ฅ)^2 ๐^๐ฆ (๐ฅ+1)= 1 Differentiating ๐ค.๐.๐ก.๐ฅ ๐(๐^๐ฆ (x + 1))/๐๐ฅ = (๐(1))/๐๐ฅ ๐(๐^๐ฆ (x + 1))/๐๐ฅ = 0 Using product rule in ey(x + 1) As (๐ข๐ฃ)โ= ๐ขโ๐ฃ + ๐ฃโ๐ข where u = ey & v = x + 1 (๐(๐^๐ฆ))/๐๐ฅ . (x+1) + (๐ (x + 1))/๐๐ฅ . ๐^๐ฆ = 0 (๐(๐^๐ฆ))/๐๐ฅ ร ๐๐ฆ/๐๐ฆ (x+1) + ((๐(๐ฅ))/๐๐ฅ + (๐(1))/๐๐ฅ) . ๐^๐ฆ = 0 (๐(๐^๐ฆ))/๐๐ฆ ร ๐๐ฆ/๐๐ฅ (x+1) + (1+0) . ๐^๐ฆ = 0 ๐^๐ฆ ร ๐๐ฆ/๐๐ฅ (x+1) + ๐^๐ฆ = 0 ๐^๐ฆ (๐๐ฆ/๐๐ฅ) (x+1) = โ ๐^๐ฆ ๐๐ฆ/๐๐ฅ = ("โ " ๐^๐ฆ)/(๐^๐ฆ (๐ฅ + 1)) ๐๐ฆ/๐๐ฅ = ("โ " 1)/((๐ฅ + 1)) Given, ๐^๐ฆ (x + 1) = 1 ๐^๐ = ๐/(๐ + ๐) Putting (2) in (1) ๐๐ฆ/๐๐ฅ = ("โ " 1)/((๐ฅ + 1)) ๐๐ฆ/๐๐ฅ = โ ๐^๐ฆ โฆ(1) โฆ(2) Again Differentiating ๐ค.๐.๐ก.๐ฅ ๐/๐๐ฅ (๐๐ฆ/๐๐ฅ) = (๐("โ" ๐^๐ฆ))/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = โ (๐(๐^๐ฆ))/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = โ (๐(๐^๐ฆ))/๐๐ฅ ร ๐๐ฆ/๐๐ฆ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = โ (๐(๐^๐ฆ))/๐๐ฆ ร ๐๐ฆ/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = "โ " ๐^๐ร ๐๐ฆ/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐ ๐/๐ ๐ ร ๐๐ฆ/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐๐ฆ/๐๐ฅ ร ๐๐ฆ/๐๐ฅ (From (1) "โ " ๐^๐ฆ " = " ๐๐ฆ/๐๐ฅ) (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = (๐๐ฆ/๐๐ฅ)^2 Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo