Check sibling questions


Transcript

Ex 5.7, 14 If ๐‘ฆ= ใ€–A๐‘’ใ€—^๐‘š๐‘ฅ + ใ€–B๐‘’ใ€—^๐‘›๐‘ฅ, show that ๐‘‘2๐‘ฆ/๐‘‘๐‘ฅ2 โˆ’ (๐‘š+๐‘›) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ + ๐‘š๐‘›๐‘ฆ = 0 ๐‘ฆ= ใ€–A๐‘’ใ€—^๐‘š๐‘ฅ + ใ€–B๐‘’ใ€—^๐‘›๐‘ฅ Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(ใ€–A๐‘’ใ€—^๐‘š๐‘ฅ " + " ใ€–B๐‘’ใ€—^๐‘›๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(ใ€–A๐‘’ใ€—^๐‘š๐‘ฅ))/๐‘‘๐‘ฅ + (๐‘‘(ใ€–B๐‘’ใ€—^๐‘›๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = A . ๐‘’^๐‘š๐‘ฅ. (๐‘‘(๐‘š๐‘ฅ))/๐‘‘๐‘ฅ + B . ๐‘’^๐‘›๐‘ฅ (๐‘‘(๐‘›๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = A . ๐‘’^๐‘š๐‘ฅ. ๐‘š + B . ๐‘’^๐‘›๐‘ฅ. ๐‘› ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐ด๐‘š๐‘’^๐‘š๐‘ฅ + ๐ต๐‘›๐‘’^๐‘›๐‘ฅ Again Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = ๐‘‘(๐ด๐‘š๐‘’^๐‘š๐‘ฅ " + " ๐ต๐‘›๐‘’^๐‘›๐‘ฅ " " )" " /๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐‘‘(๐ด๐‘š๐‘’^๐‘š๐‘ฅ )/๐‘‘๐‘ฅ + ๐‘‘(๐ต๐‘›๐‘’^๐‘›๐‘ฅ )" " /๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐ด๐‘š ๐‘‘(๐‘’^๐‘š๐‘ฅ )/๐‘‘๐‘ฅ + ๐ต๐‘› ๐‘‘(๐‘’^๐‘›๐‘ฅ )" " /๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐ด๐‘š . ๐‘’^(๐‘š๐‘ฅ ). ๐‘‘(๐‘š๐‘ฅ )/๐‘‘๐‘ฅ + ๐ต๐‘› . ๐‘’^๐‘›๐‘ฅ . ๐‘‘(๐‘›๐‘ฅ)/๐‘‘๐‘ฅ (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐ด๐‘š๐‘’^(๐‘š๐‘ฅ ) . ๐‘š+๐ต๐‘›๐‘’^๐‘›๐‘ฅ . ๐‘› (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = ๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›2๐‘’^๐‘›๐‘ฅ We need to prove (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) โˆ’ (๐‘š+๐‘›) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ + ๐‘š๐‘›๐‘ฆ = 0 Solving LHS (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) โˆ’ (๐‘š+๐‘›) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ + ๐‘š๐‘›๐‘ฆ = (๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›2๐‘’^๐‘›๐‘ฅ) โˆ’ (๐‘š+๐‘›) (๐ด๐‘š๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›๐‘’^๐‘›๐‘ฅ) + ๐‘š๐‘› (๐ด๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘’^๐‘›๐‘ฅ) = ๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›2๐‘’^๐‘›๐‘ฅ โˆ’ ๐‘š(๐ด๐‘š๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›๐‘’^๐‘›๐‘ฅ) โˆ’ ๐‘›(๐ด๐‘š๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›๐‘’^๐‘›๐‘ฅ) + ๐‘š๐‘› ๐ด๐‘’^(๐‘š๐‘ฅ )+๐‘š๐‘›๐ต๐‘’^๐‘›๐‘ฅ = ๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )+๐ต๐‘›2๐‘’^๐‘›๐‘ฅ โˆ’๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )โˆ’ ๐ต๐‘š๐‘›๐‘’^๐‘›๐‘ฅ โˆ’ ๐ด๐‘›๐‘š๐‘’^(๐‘š๐‘ฅ ) + ๐ต๐‘›2๐‘’^๐‘›๐‘ฅ+ ๐‘š๐‘› ๐ด๐‘’^(๐‘š๐‘ฅ )+๐‘š๐‘›๐ต๐‘’^๐‘›๐‘ฅ = ๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ )โˆ’ ๐ด๐‘š2๐‘’^(๐‘š๐‘ฅ ) + ๐ต๐‘›2๐‘’^๐‘›๐‘ฅ โˆ’๐ต๐‘›2๐‘’^๐‘›๐‘ฅ โˆ’ ๐ต๐‘š๐‘›๐‘’^๐‘›๐‘ฅ + ๐ต๐‘š๐‘›๐‘’^๐‘›๐‘ฅ โˆ’ ๐ด๐‘›๐‘š๐‘’^(๐‘š๐‘ฅ ) + ๐ด๐‘›๐‘š๐‘’^(๐‘š๐‘ฅ ) = 0 = RHS Hence proved

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo