Ex 5.7, 14 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.7, 14 If ๐ฆ= ใA๐ใ^๐๐ฅ + ใB๐ใ^๐๐ฅ, show that ๐2๐ฆ/๐๐ฅ2 โ (๐+๐) ๐๐ฆ/๐๐ฅ + ๐๐๐ฆ = 0 ๐ฆ= ใA๐ใ^๐๐ฅ + ใB๐ใ^๐๐ฅ Differentiating ๐ค.๐.๐ก.๐ฅ ๐๐ฆ/๐๐ฅ = (๐(ใA๐ใ^๐๐ฅ " + " ใB๐ใ^๐๐ฅ))/๐๐ฅ ๐๐ฆ/๐๐ฅ = (๐(ใA๐ใ^๐๐ฅ))/๐๐ฅ + (๐(ใB๐ใ^๐๐ฅ))/๐๐ฅ ๐๐ฆ/๐๐ฅ = A . ๐^๐๐ฅ. (๐(๐๐ฅ))/๐๐ฅ + B . ๐^๐๐ฅ (๐(๐๐ฅ))/๐๐ฅ ๐๐ฆ/๐๐ฅ = A . ๐^๐๐ฅ. ๐ + B . ๐^๐๐ฅ. ๐ ๐๐ฆ/๐๐ฅ = ๐ด๐๐^๐๐ฅ + ๐ต๐๐^๐๐ฅ Again Differentiating ๐ค.๐.๐ก.๐ฅ ๐/๐๐ฅ (๐๐ฆ/๐๐ฅ) = ๐(๐ด๐๐^๐๐ฅ " + " ๐ต๐๐^๐๐ฅ " " )" " /๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐(๐ด๐๐^๐๐ฅ )/๐๐ฅ + ๐(๐ต๐๐^๐๐ฅ )" " /๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐ด๐ ๐(๐^๐๐ฅ )/๐๐ฅ + ๐ต๐ ๐(๐^๐๐ฅ )" " /๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐ด๐ . ๐^(๐๐ฅ ). ๐(๐๐ฅ )/๐๐ฅ + ๐ต๐ . ๐^๐๐ฅ . ๐(๐๐ฅ)/๐๐ฅ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐ด๐๐^(๐๐ฅ ) . ๐+๐ต๐๐^๐๐ฅ . ๐ (๐^2 ๐ฆ)/(๐๐ฅ^2 ) = ๐ด๐2๐^(๐๐ฅ )+๐ต๐2๐^๐๐ฅ We need to prove (๐^2 ๐ฆ)/(๐๐ฅ^2 ) โ (๐+๐) ๐๐ฆ/๐๐ฅ + ๐๐๐ฆ = 0 Solving LHS (๐^2 ๐ฆ)/(๐๐ฅ^2 ) โ (๐+๐) ๐๐ฆ/๐๐ฅ + ๐๐๐ฆ = (๐ด๐2๐^(๐๐ฅ )+๐ต๐2๐^๐๐ฅ) โ (๐+๐) (๐ด๐๐^(๐๐ฅ )+๐ต๐๐^๐๐ฅ) + ๐๐ (๐ด๐^(๐๐ฅ )+๐ต๐^๐๐ฅ) = ๐ด๐2๐^(๐๐ฅ )+๐ต๐2๐^๐๐ฅ โ ๐(๐ด๐๐^(๐๐ฅ )+๐ต๐๐^๐๐ฅ) โ ๐(๐ด๐๐^(๐๐ฅ )+๐ต๐๐^๐๐ฅ) + ๐๐ ๐ด๐^(๐๐ฅ )+๐๐๐ต๐^๐๐ฅ = ๐ด๐2๐^(๐๐ฅ )+๐ต๐2๐^๐๐ฅ โ๐ด๐2๐^(๐๐ฅ )โ ๐ต๐๐๐^๐๐ฅ โ ๐ด๐๐๐^(๐๐ฅ ) + ๐ต๐2๐^๐๐ฅ+ ๐๐ ๐ด๐^(๐๐ฅ )+๐๐๐ต๐^๐๐ฅ = ๐ด๐2๐^(๐๐ฅ )โ ๐ด๐2๐^(๐๐ฅ ) + ๐ต๐2๐^๐๐ฅ โ๐ต๐2๐^๐๐ฅ โ ๐ต๐๐๐^๐๐ฅ + ๐ต๐๐๐^๐๐ฅ โ ๐ด๐๐๐^(๐๐ฅ ) + ๐ด๐๐๐^(๐๐ฅ ) = 0 = RHS Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo