Ex 5.7, 12 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.7, 12 If y= γπππ γ^(β1) π₯ , Find π2π¦/ππ₯2 in terms of π¦ alone.Let y = γπππ γ^(β1) π₯ Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = (π(γπππ γ^(β1) π₯))/ππ₯ ππ¦/ππ₯ = (β1)/β(1 β π₯^2 ) Again Differentiating π€.π.π‘.π₯ π/ππ₯ (ππ¦/ππ₯) = π/ππ₯ ((β1)/β(1 β π₯^2 )) ("As" π(γπππ γ^(β1) π₯)/ππ₯=(β1)/β(1 β π₯^2 )) (π^2 π¦)/(ππ₯^2 ) = π/ππ₯ ((β1)/β(1 β π₯^2 )) (π^2 π¦)/(ππ₯^2 ) = βπ/ππ₯ (1βπ₯^2 )^((β1)/2) (π^2 π¦)/(ππ₯^2 ) = β((β1)/2) (1βπ₯^2 )^((β1)/2 β 1)Γ (1βπ₯^2 )^β² (π^2 π¦)/(ππ₯^2 ) = 1/2 (1βπ₯^2 )^((β3)/2) Γ (β2π₯) (π^2 π¦)/(ππ₯^2 ) = βπ₯(1βπ₯^2 )^((β3)/2) (π ^π π)/(π π^π ) = (β π)/( (π β π^π )^(π/π ) ) But we need to calculate (π^2 π¦)/(ππ₯^2 ) in terms of y . y = γπππ γ^(β1) π₯ cosβ‘π¦ = π₯ π₯ = cosβ‘π¦ Putting π₯ = cosβ‘π¦ in equation (π^2 π¦)/(ππ₯^2 ) = (β π₯)/( (1 β π₯^2 )^(3/2 ) ) (π^2 π¦)/(ππ₯^2 ) = (βcosβ‘π¦ " " )/( (1 β γ(cosβ‘π¦)γ^2 )^(3/2 ) ) = (β cosβ‘π¦ " " )/( γ(sin2β‘γπ¦) γγ^(3/2 ) ) (As 1βcosβ‘γ2 γ π = sinβ‘2 π) = (β cosβ‘π¦ " " )/( γ(sinβ‘γπ¦) γγ^(2 Γ 3/2 ) ) = (β πππ β‘π¦)/( γ(π ππβ‘γπ¦) γγ^3 ) = (β πππ β‘π¦)/sinβ‘π¦ Γ1/( γ(π ππβ‘π¦)γ^2 ) = βππ¨πβ‘π πππππ^π π
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo