Ex 5.7, 7 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.7, 7 Find the second order derivatives of the function π^6π₯ cosβ‘3π₯ Let y = π^6π₯ cosβ‘3π₯ Differentiating π€.π.π‘.π₯ . ππ¦/ππ₯ = (π(π^6π₯ " " cosβ‘3π₯))/ππ₯ ππ¦/ππ₯ = π(π^6π₯ )/ππ₯ .cosβ‘3π₯ + (π(cosβ‘3π₯))/ππ₯ .γ πγ^6π₯ ππ¦/ππ₯ =γ πγ^6π₯ .π(6π₯)/ππ₯ . cosβ‘3π₯ + (γβsinγβ‘3π₯) . (π(3π₯))/ππ₯ . γ πγ^6π₯ Using product rule in π^6π₯ πππ β‘3π₯ . As (π’π£)β= π’βπ£ + π£βπ’ where u = π^6π₯ " & v =" cosβ‘3π₯ ππ¦/ππ₯ = π^6π₯ . 6 . cosβ‘3π₯ β sinβ‘3π₯ . 3 . π^6π₯ ππ¦/ππ₯ = 3γ πγ^6π₯ (2γ cosγβ‘3π₯ β sin 3π₯) Again Differentiating π€.π.π‘.π₯ π/ππ₯ (ππ¦/ππ₯) = (π(3 π^6π₯ (2 cosβ‘3π₯ β sinβ‘3π₯) ))/ππ₯ (π^2 π¦)/(ππ₯^2 ) = 3(π(π^6π₯ (2 cosβ‘3π₯ β sinβ‘3π₯) ))/ππ₯ (π^2 π¦)/(ππ₯^2 ) = 3 (π(γ πγ^6π₯ )/ππ₯ ."(2" cosβ‘3π₯ " β sin " 3π₯") " +(π(2 cosβ‘3π₯ β sinβ‘3π₯))/ππ₯ ". " π^6π₯ ) Using product Rule As (π’π£)β= π’βπ£ + π£βπ’ where v = γ πγ^6π₯ & v = 2 cos 3x β sin 3x (π^2 π¦)/(ππ₯^2 ) = 3 [6γ πγ^6π₯ "(2" γ cosγβ‘3π₯ " β sin " 3π₯") + (" β"2" sinβ‘γ3π₯.3γ " β " cosβ‘3π₯.3")" π^6π₯ ] (π^2 π¦)/(ππ₯^2 ) = 3[12γ πγ^6π₯ γ.cosγβ‘3π₯ "β 6" γ πγ^6π₯ "sin " 3π₯βγ6 πγ^6π₯ " sin " 3π₯β3γ πγ^6π₯ cosβ‘3π₯ ] (π^2 π¦)/(ππ₯^2 ) = 3[9π^6π₯ cosβ‘3π₯β12π^6π₯.sinβ‘3π₯ ] (π^2 π¦)/(ππ₯^2 ) = 9π^6π₯ [3 cosβ‘3π₯β4 sinβ‘3π₯ ] Hence , (π ^π π)/(π π^π ) = ππ^ππ [π πππβ‘ππβπ πππβ‘ππ ]
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo