Check sibling questions


Transcript

Question 7 Solve tan–1 2x + tan–1 3x = π/4 Given tan–1 2x + tan 3x = π/4 tan–1 ((2x + 3x)/(1 − 2x × 3x)) = π/4 𝟓𝐱/(𝟏 − 𝟔𝐱𝟐) = tan 𝝅/𝟒 We know that tan–1 x + tan–1 y = tan–1 ((𝐱 + 𝐲)/(𝟏 − 𝐱𝐲)) Replacing x by 2x & y by 3x 5x/(1− 6x2) = 1 5x = 1 × (1 – 6x2) 5x = 1 – 6x2 6x2 + 5x – 1 = 0 6x2 + 6x – x – 1 = 0 6x(x + 1 ) – 1 (x – 1) = 0 (6x – 1) (x + 1) = 0 Thus, x = 1/6 or x = −1 But For x = −1 tan–1 2x + tan–1 3x = π/4 tan–1 (–2) + tan–1 (–3) = π/4 So, L.H.S becomes negative but R.H.S is positive. Thus, x = –1 is not possible. Hence, x = 𝟏/𝟔 is the only solution of the given equation

  1. Chapter 2 Class 12 Inverse Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo