Last updated at Dec. 16, 2024 by Teachoo
Question 6 (Introduction) Simplify tan−1 [(a cos〖x − b sinx 〗)/(b cos〖x + a sinx 〗 )], if a/b tan x > −1 We write (a cos〖x − b sinx 〗)/(b cos〖x + a sinx 〗 ) in form of tan We know that tan (x – y) = 𝑡𝑎𝑛〖𝑥 −〖 𝑡𝑎𝑛〗〖𝑦 〗 〗/(1 + 𝑡𝑎𝑛〖𝑥 𝑡𝑎𝑛𝑦 〗 ) We need denominator in form 1 + tan x tan y Hence, we need 1 instead of b cos x So dividing both numerator and denominator by b cos x Question 6 Simplify tan−1 [(a cos〖x − b sinx 〗)/(b cos〖x + a sinx 〗 )], if a/b tan x > −1 tan−1 [(a cos〖x − b sinx 〗)/(b cos〖x + a sinx 〗 )] = tan−1 [((a cos〖x − b sinx 〗)/(b cosx ))/((b cos〖x + a sinx 〗)/(b cosx ))] = tan−1 [((𝑎 cos𝑥)/(𝑏 cos𝑥 ) − (𝑏 sin𝑥)/(𝑏 cos𝑥 ))/((𝑏 cos𝑥)/(𝑏 cos𝑥 ) + (𝑎 sin𝑥)/(𝑏 cos𝑥 ))] = tan−1 [(𝑎/(𝑏 ) − sin𝑥/cos𝑥 )/(1 + (𝑎 sin𝑥)/(𝑏 cos𝑥 ))] = tan−1 [(a/b − tanx)/(1 + a/b tanx )] = tan−1 a/b – tan−1 (tan x) = tan−1 𝐚/𝐛 − x Using equation tan−1((𝒙 − 𝒚)/(𝟏 + 𝒙𝒚)) = tan−1 x – tan−1 y Replacing x with 𝑎/𝑏 and y with tan x
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo