Last updated at Dec. 16, 2024 by Teachoo
Question 2 Show that tan-1 ๐ฅ + tan-1 2๐ฅ/(1 โ๐ฅ2) = tan-1 (3๐ฅ โ ๐ฅ3)/(1 โ 3๐ฅ2) Solving L.H.S tan-1 ๐ฅ + tan-1 2๐ฅ/(1 โ ๐ฅ2) = tan-1 (๐ฅ + 2๐ฅ/(1 โ ๐ฅ2))/(1โ ๐ฅ ร 2๐ฅ/(1 โ ๐ฅ2)) = tan-1 ((๐ฅ(1 โ ๐ฅ2) + 2๐ฅ)/(1 โ ๐ฅ2))/(ใ(1 โ ๐ฅ2) โ 2๐ฅใ^2/(1 โ ๐ฅ2)) We know that tan-1 x + tan-1 y = tan-1 ((๐+๐ )/(๐ โ๐๐)) Replacing x by x and y by 2๐ฅ/(1 โ ๐ฅ2) = tan-1 ((๐ฅ โ ๐ฅ3 + 2๐ฅ)/(1 โ ๐ฅ2))/(ใ1 โ ๐ฅ2โ 2๐ฅใ^2/(1 โ ๐ฅ2)) = tan-1 ((3๐ฅ โ ๐ฅ3)/(1 โ ๐ฅ2))/(ใ1 โ 3๐ฅใ^2/(1 โ ๐ฅ2)) = tan-1 (3๐ฅ โ ๐ฅ3)/(1 โ ๐ฅ2) ร (1 โ ๐ฅ2)/ใ1 โ 3๐ฅใ^2 = tan-1 (3๐ฅ โ ๐ฅ3)/ใ1 โ 3๐ฅใ^2 = R.H.S Thus L.H.S = R.H.S Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo