Last updated at Dec. 16, 2024 by Teachoo
Ex 2.1, 10 (Method 1) Find the principal value of cosec–1 (–√2) Let y = cosec–1 (– √2) y = −cosec–1 (√2) y = − 𝝅/𝟒 Since Range of cosec−1 is [−π/2,π/2] − {0} Hence, Principal Value is (−𝝅)/𝟒 We know that cosec−1 (−x) = − cosec −1 x Since cosec 𝜋/4 = √2 𝜋/4 = cosec−1 (√2) Ex 2.1, 10 (Method 2) Find the principal value of cosec–1 (–√2) Let y = cosec–1 (– √2) cosec y = – √2 cosec y = cosec ((−𝝅)/𝟒) Since Range of cosec−1 is [−π/2,π/2] − {0} Hence, Principal Value is (−𝝅)/𝟒 Rough We know that cosec 45° = √2 θ = 45° = 45 × 𝜋/180 = 𝜋/4 Since −√2 is negative Principal value is − θ i.e. (−𝜋)/4
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo