Check sibling questions


Transcript

Question 2 If three point (h, 0), (a, b) & (0, k) lie on a line, show that ๐‘Ž/โ„Ž + ๐‘/๐‘˜ = 1 . Let points be A (h, 0), B (a, b), C (0, k) Given that A, B & C lie on a line Hence the 3 points are collinear โˆด Slope of AB = Slope of BC We know that Slope of a line through the points (x1, y1), (x2, y2) is m = (๐‘ฆ_2 โˆ’ ๐‘ฆ_1)/(๐‘ฅ_2 โˆ’ ๐‘ฅ_1 ) Slope of line AB through the points A(h, 0), B(a, b) Here x1 = h & y1 = 0 x2 = a & y2 = b Putting values m = (๐‘ โˆ’ 0)/(๐‘Ž โˆ’ โ„Ž) m = ๐‘/(๐‘Ž โˆ’ โ„Ž) Slope of line BC through the points B(a, b) & C(0, k) Here x1 = a & y1 = b x2 = 0 & y2 = k Putting values m = (๐‘˜ โˆ’ ๐‘)/(0 โˆ’ ๐‘Ž) m = (๐‘˜ โˆ’ ๐‘)/(โˆ’๐‘Ž) Now, Slope of AB = Slope of BC ๐‘/(๐‘Ž โˆ’ โ„Ž) = (๐‘˜ โˆ’ ๐‘)/( โˆ’ ๐‘Ž) โ€“a(b) = (k โ€“ b) (a โ€“ h) โ€“ab = k(a โ€“ h) โ€“ b(a โ€“ h) โ€“ab = ka โ€“ kh โ€“ ab + bh โ€“ab + ab = ka โ€“ kh + bh 0 = ka + bh โ€“ kh ka + bh = kh Dividing both sides by kh ๐‘˜๐‘Ž/๐‘˜โ„Ž + ๐‘โ„Ž/๐‘˜โ„Ž = ๐‘˜โ„Ž/๐‘˜โ„Ž ๐‘Ž/โ„Ž + ๐‘/k = 1 Hence proved

  1. Chapter 9 Class 11 Straight Lines
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo