Last updated at Dec. 16, 2024 by Teachoo
Misc 13 If (๐+๐๐)(๐+๐๐)(๐+๐๐)(๐+๐โ)=๐ด+๐๐ต, then show that (๐2 + ๐2) (๐2 + ๐2) (๐2 + ๐2) (๐2 + โ2) = ๐ด2 +๐ต2. Introduction (๐ด + ๐๐ต) ( ๐ด โ ๐๐ต) Using ( a โ b ) ( a + b ) = a2 โ b2 = ๐ด2 โ (๐๐ต)2 = ๐ด2 โ ๐2 ๐ต2 Putting i2 = โ1 = ๐ด2 โ ( โ1) ๐ต2 = ๐ด2 +๐ต2 Hence, (๐ด + ๐๐ต) (๐ด โ ๐๐ต) = ๐ด2 +๐ต2 Misc, 19 If (๐+๐๐)(๐+๐๐)(๐+๐๐)(๐+๐โ)=๐ด+๐๐ต, then show that (๐2 + ๐2) (๐2 + ๐2) (๐2 + ๐2) (๐2 + โ2) = ๐ด2 +๐ต2. Given ( ๐ด + ๐๐ต ) = (๐ + ๐๐ ) ( ๐ + ๐๐ ) (๐ + ๐๐ ) ( ๐ + ๐โ ) To calculate ( ๐ด โ ๐๐ต ) Replacing ๐ by โ๐ in (1) (๐ด โ๐๐ต ) = ( ๐ โ ๐๐ ) ( ๐ โ ๐๐ ) ( ๐ โ ๐๐ ) ( ๐ โ ๐โ ) Now, calculating (๐ด + ๐๐ต) ( ๐ด โ ๐๐ต) (๐ด + ๐๐ต) ( ๐ด โ ๐๐ต) = (๐ + ๐๐ )( ๐ + ๐๐ )(๐ + ๐๐ )( ๐ + ๐โ )(๐ โ ๐๐ ) ( ๐ โ ๐๐ ) (๐ โ ๐๐ ) ( ๐ โ ๐โ ) ๐ด2 + ๐ต^2= [( ๐+ ๐๐ )(๐ โ ๐๐ )][(๐+ ๐๐)(๐ โ ๐๐ )] [( ๐ + ๐๐) ( ๐ โ ๐๐ )] [( ๐ + ๐โ ) ( ๐ โ ๐โ)] ๐๐ ๐๐๐ ( ๐ฅ โ ๐ฆ ) ( ๐ฅ + ๐ฆ ) = ๐ฅ2+๐ฆ2 = [(๐)^2 โ (๐๐)2] [ ๐2 โ ( ๐๐)^2] [๐2โ (๐๐)^2 ] [๐2 โ (โ ๐โ)]2 = [ ๐2 โ ๐2 ๐2 ] [ ๐2 โ ๐2 ๐2 ] [ ๐2 โ ๐2 ๐2 ] [ ๐2 โ ๐2 โ2 ] Putting i2 = โ1 = [ ๐2โ (โ1)๐2] [ ๐2 โ (โ1) ๐ ] [ ๐2 โ (โ1) ๐)] [๐2 โ (โ1) โ2 ] = [ ๐2 + ๐2 ] [ ๐2 + ๐2 ] [ ๐2 + ๐2 ] [๐2 + โ2 ] Hence, (๐2 + ๐2) (๐2 + ๐2) (๐2 + ๐2) (๐2 + โ2) = ๐ด2 +๐ต2. Hence proved
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6
Misc 7
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 You are here
Misc 14 Important
Question 1 (i)
Question 1 (ii) Important
Question 2
Question 3
Question 4 Important
Question 5
Question 6 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo