Check sibling questions

 


Transcript

Misc 13 If (๐‘Ž+๐‘–๐‘)(๐‘+๐‘–๐‘‘)(๐‘’+๐‘–๐‘“)(๐‘”+๐‘–โ„Ž)=๐ด+๐‘–๐ต, then show that (๐‘Ž2 + ๐‘2) (๐‘2 + ๐‘‘2) (๐‘’2 + ๐‘“2) (๐‘”2 + โ„Ž2) = ๐ด2 +๐ต2. Introduction (๐ด + ๐‘–๐ต) ( ๐ด โ€“ ๐‘–๐ต) Using ( a โ€“ b ) ( a + b ) = a2 โ€“ b2 = ๐ด2 โ€“ (๐‘–๐ต)2 = ๐ด2 โ€“ ๐‘–2 ๐ต2 Putting i2 = โˆ’1 = ๐ด2 โ€“ ( โˆ’1) ๐ต2 = ๐ด2 +๐ต2 Hence, (๐ด + ๐‘–๐ต) (๐ด โ€“ ๐‘–๐ต) = ๐ด2 +๐ต2 Misc, 19 If (๐‘Ž+๐‘–๐‘)(๐‘+๐‘–๐‘‘)(๐‘’+๐‘–๐‘“)(๐‘”+๐‘–โ„Ž)=๐ด+๐‘–๐ต, then show that (๐‘Ž2 + ๐‘2) (๐‘2 + ๐‘‘2) (๐‘’2 + ๐‘“2) (๐‘”2 + โ„Ž2) = ๐ด2 +๐ต2. Given ( ๐ด + ๐‘–๐ต ) = (๐‘Ž + ๐‘–๐‘ ) ( ๐‘ + ๐‘–๐‘‘ ) (๐‘’ + ๐‘–๐‘“ ) ( ๐‘” + ๐‘–โ„Ž ) To calculate ( ๐ด โ€“ ๐‘–๐ต ) Replacing ๐‘– by โ€“๐‘– in (1) (๐ด โˆ’๐‘–๐ต ) = ( ๐‘Ž โ€“ ๐‘–๐‘ ) ( ๐‘ โ€“ ๐‘–๐‘‘ ) ( ๐‘’ โ€“ ๐‘–๐‘“ ) ( ๐‘” โ€“ ๐‘–โ„Ž ) Now, calculating (๐ด + ๐‘–๐ต) ( ๐ด โ€“ ๐‘–๐ต) (๐ด + ๐‘–๐ต) ( ๐ด โ€“ ๐‘–๐ต) = (๐‘Ž + ๐‘–๐‘ )( ๐‘ + ๐‘–๐‘‘ )(๐‘’ + ๐‘–๐‘“ )( ๐‘” + ๐‘–โ„Ž )(๐‘Ž โˆ’ ๐‘–๐‘ ) ( ๐‘ โˆ’ ๐‘–๐‘‘ ) (๐‘’ โˆ’ ๐‘–๐‘“ ) ( ๐‘” โˆ’ ๐‘–โ„Ž ) ๐ด2 + ๐ต^2= [( ๐‘Ž+ ๐‘–๐‘ )(๐‘Ž โ€“ ๐‘–๐‘ )][(๐‘+ ๐‘–๐‘‘)(๐‘ โ€“ ๐‘–๐‘‘ )] [( ๐‘’ + ๐‘–๐‘“) ( ๐‘’ โ€“ ๐‘–๐‘“ )] [( ๐‘” + ๐‘–โ„Ž ) ( ๐‘” โ€“ ๐‘–โ„Ž)] ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ( ๐‘ฅ โ€“ ๐‘ฆ ) ( ๐‘ฅ + ๐‘ฆ ) = ๐‘ฅ2+๐‘ฆ2 = [(๐‘Ž)^2 โ€“ (๐‘–๐‘)2] [ ๐‘2 โ€“ ( ๐‘–๐‘‘)^2] [๐‘’2โˆ’ (๐‘–๐‘“)^2 ] [๐‘”2 โ€“ (โˆ’ ๐‘–โ„Ž)]2 = [ ๐‘Ž2 โˆ’ ๐‘2 ๐‘–2 ] [ ๐‘2 โˆ’ ๐‘–2 ๐‘‘2 ] [ ๐‘’2 โˆ’ ๐‘–2 ๐‘“2 ] [ ๐‘”2 โˆ’ ๐‘–2 โ„Ž2 ] Putting i2 = โˆ’1 = [ ๐‘Ž2โ€“ (โˆ’1)๐‘2] [ ๐‘2 โ€“ (โˆ’1) ๐‘‘ ] [ ๐‘’2 โ€“ (โˆ’1) ๐‘“)] [๐‘”2 โ€“ (โˆ’1) โ„Ž2 ] = [ ๐‘Ž2 + ๐‘2 ] [ ๐‘2 + ๐‘‘2 ] [ ๐‘’2 + ๐‘“2 ] [๐‘”2 + โ„Ž2 ] Hence, (๐‘Ž2 + ๐‘2) (๐‘2 + ๐‘‘2) (๐‘’2 + ๐‘“2) (๐‘”2 + โ„Ž2) = ๐ด2 +๐ต2. Hence proved

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo