Last updated at Dec. 16, 2024 by Teachoo
Misc, 16 If (x + iy)3 = u + iv, then show that u/x + v/y = 4 (๐ฅ2 โ ๐ฆ2) . We know that (๐ + ๐)^3 = ๐3 + ๐3 +3๐๐ (๐ + ๐) Replacing a = x and b = iy (๐ฅ + ๐๐ฆ)3= ๐ฅ3 + (๐๐ฆ)3 + 3 ๐ฅ ๐๐ฆ (๐ฅ + ๐๐ฆ) = ๐ฅ3 + ๐3๐ฆ3 + 3๐ฅ ๐ฆ๐ (๐ฅ + ๐๐ฆ) = ๐ฅ3 + ๐2 ร๐ ๐ฆ3 + 3๐ฅ2๐ฆ๐+ 3๐ฅ๐ฆ2๐2 Putting ๐2 = โ1 = ๐ฅ3 + (โ 1 ร ๐ ร ๐ฅ๐ฆ2) + 3๐ฅ2 ๐ฆ๐ + 3๐ฅ๐ฆ2 ๐ฅ(โ1) = ๐ฅ3 โ ๐๐ฆ3 + 3๐ฅ2 ๐ฆ๐ โ 3๐ฅ๐ฆ2 = ๐ฅ3 โ 3๐ฅ๐ฆ2 โ ๐๐ฆ3 + 3๐ฅ2๐ฆ๐ = ๐ฅ3 โ 3๐ฅ๐ฆ2 + 3๐ฅ2๐ฆ๐ โ ๐๐ฆ3 = ๐ฅ3 โ 3๐ฅ๐ฆ2 + (3๐ฅ2๐ฆ โ ๐ฆ3)๐ Hence, (๐ฅ + ๐๐ฆ)3 = ๐ฅ3 โ 3๐ฅ๐ฆ2 + (3๐ฅ2๐ฆ โ ๐ฆ3)๐ But, (๐ฅ + ๐๐ฆ)3 = ๐ข + ๐๐ฃ So, ๐ฅ3 โ 3๐ฅ๐ฆ2 + (3๐ฅ2๐ฆ โ ๐ฆ3)๐ = ๐ข + ๐๐ฃ Comparing Real parts ๐ฅ3 โ 3๐ฅ๐ฆ2 = ๐ข ๐ฅ (๐ฅ2โ 3๐ฆ2) = ๐ข ๐ฅ2 โ 3๐ฆ2 = ๐ข/๐ฅ Adding (1) & (2) i.e. (1) + (2) ๐ข/๐ฅ + ๐ฃ/๐ฆ = (๐ฅ2 โ 3๐ฆ2) + (3๐ฅ2 โ๐ฆ2) = ๐ฅ2 โ 3๐ฆ2 +3๐ฅ2 โ ๐ฆ2 = 4๐ฅ2 โ 4๐ฆ2 = 4 (๐ฅ2 โ ๐ฆ2) Thus, u/x + v/y = 4 (x2 โ y2) Hence Proved
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6
Misc 7
Misc 8
Misc 9 Important
Misc 10 You are here
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Question 1 (i)
Question 1 (ii) Important
Question 2
Question 3
Question 4 Important
Question 5
Question 6 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo