Check sibling questions


Transcript

Question 6 Find the modulus and argument of the complex number ( 1 + 2i)/(1 βˆ’ 3i) . First we solve ( 1 + 2𝑖)/(1 βˆ’ 3𝑖) Let 𝑧 = ( 1 + 2𝑖)/(1 βˆ’ 3𝑖) Rationalizing the same = ( 1 + 2𝑖)/(1 βˆ’ 3𝑖) x ( 1 + 3𝑖)/(1 + 3𝑖) = ((1 + 2𝑖) ( 1 + 3𝑖))/((1 βˆ’ 3𝑖) ( 1 + 3𝑖)) = (1 (1 + 3𝑖) + 2𝑖 (1 + 3𝑖))/((1 βˆ’ 3𝑖) (1 + 3𝑖) ) = ( 1 + 3𝑖+ 2𝑖+ 6𝑖2)/((1 βˆ’ 3𝑖) (1 + 3𝑖) ) Using ( a – b ) ( a + b ) = a2 - b2 = ( 1+ 5𝑖+ 6𝑖2)/((1)2 βˆ’ (3𝑖)2) = (1 + 5𝑖+ 6𝑖2)/(1 βˆ’ 9𝑖2) Putting 𝑖2 = - 1 = (1 + 5𝑖 + 6 (βˆ’1))/(1 βˆ’ 9 (βˆ’1)) = (1 + 5𝑖 βˆ’ 6 )/(1 + 9 ) = ( \βˆ’ 5 + 5𝑖)/10 = ( 5 (βˆ’1 +𝑖))/10 = (βˆ’ 1+ 𝑖)/2 = (βˆ’ 1)/2+𝑖 ( 1/2 ) Thus, 𝑧 = (βˆ’ 1)/2+𝑖 ( 1/2 ) Method 1 To find Modulus Now we have z = (βˆ’ 1)/2 + 𝑖 (1/2) Complex number z is of the form x + 𝑖 y Here x = (βˆ’ 1)/2 and y = 1/2 Modulus of z = |z| = √(π‘₯^2+𝑦2) = √(( (βˆ’ 1)/(2 ))^2+( 1/(2 ))^2 ) = √(1/4+1/4) = √(2/4) = √(1/2) = 1/√2 Modulus of z = 1/√2 Method 2 To calculate modulus of z Given z = (βˆ’1)/2 + 𝑖 (1/2) Let 𝑧=π‘Ÿ (cos⁑θ+𝑖 sinΞΈ) Here r is modulus, and ΞΈ is argument Form (1) and (2) (βˆ’1)/2 + 𝑖 (1/2) = π‘Ÿ (cos⁑θ+𝑖 sinΞΈ) (βˆ’1)/2 + 𝑖 (1/2) = r cos ΞΈ + 𝑖r sin ΞΈ Comparing real part (βˆ’ 1)/2 = r cos ΞΈ Adding (3) and (4) 1/4 + 1/4 = r2 cos2 ΞΈ + r2 sin2 ΞΈ (1+1)/4 = r2 (cos2 ΞΈ+ sin2 ΞΈ) 2/4 = r2 Γ— 1 1/2 = r2 1/√2 = r Modulus of z = 1/√2 Finding argument (βˆ’1)/2 + 𝑖 (1/2) = r cos ΞΈ + 𝑖r sin ΞΈ Hence, sin ΞΈ = 1/√2 & cos ΞΈ = (βˆ’ 1)/√2 Here, sin ΞΈ is positive and cos ΞΈ is negative, Hence, ΞΈ lies in IVth quadrant Argument = 180Β° – 45Β° = 135Β° = 135Β° Γ— πœ‹/180o = ( 3 πœ‹)/4 So argument of z = ( 3 πœ‹)/4

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo