Last updated at Dec. 16, 2024 by Teachoo
Misc 12 Let z1 = 2 i, z2 = -2 + i . Find Re (( _1 _2)/( _1 ) ) We need to find Re (( _1 _2)/( _1 ) ) i.e.Real part of (( _1 _2)/( _1 ) ) Lets first calculate (( _1 _2)/( _1 ) ) z1 = 2 z2 = 2 + ("z1" ) = 2 + (( _1 _2)/( _1 ) ) = ((2 ) ( 2 + ))/(2 + ) = (2( 2 + ) ( 2 + ))/(2 + ) = (2 ( 2) + 2 + ( ) ( 2) + ( ) )/(2 + ) = ( 4 + 2 + 2 2)/(2 + ) Putting i2 = 1 = ( 4 + 2 + 2 ( 1))/(2 + ) = ( 4 + 2 + 2 + 1)/(2 + ) = ( 4 + 1 + 2 + 2 )/(2 + ) = ( 3 + 4 )/(2 + ) Rationalizing = ( 3 + 4 )/(2 + ) (2 )/(2 ) = (( 3 + 4 ) ( 2 ))/(( 2 + ) ( 2 )) = ( 3 ( 2 ) + 4 ( 2 ))/(( 2 + ) ( 2 )) = ( 3 2 + ( 3) ( ) + 4 2 + 4 ( ))/(( 2 + ) ( 2 )) = ( 6 + 3 + 8 4 2)/(( 2 + ) ( 2 )) Using (a+b)(a-b) = a2 b2 = ( 6 + 3 + 8 4 2)/(22 2) Putting i2 = - 1 = ( 6 + 3 + 8 4 ( 1))/(4 ( 1) ) = ( 6 + 3 + 8 + 4)/(4 + 1) = ( 6 + 4 + 3 + 8 )/5 = ( 2 +11 )/5 = ( 2)/5 + 11/5 (( _1 _2)/( _1 ) ) = ( 2)/5 + 11/5 Re ((z1 z2)/("z1" ) ) = ( 2)/5 Misc 12 Let 1 = 2 , 2 = 2 + . Find (ii) Im (1/( _1 ( _1 ) )) We need to find Im (1/( _1 ( _1 ) )) i.e. imaginary part of (1/( _1 ( _1 ) )) Lets first calculate (1/( _1 ( _1 ) )) 1 = 2 ("z1" ) = 2 + 1/( _1 ( _1 ) ) = 1/(( 2 ) ( 2 + )) Using ( a + b ) ( a b ) = a2 b2 = 1/((2)2 ( )2) = 1/(4 ( 1) ) = 1/(4+1) = 1/5 = 1/5 + 0 = 1/5 + 0 So, imaginary part is 0 Hence, Im (1/( _1 ( _1 ) )) = 0
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6
Misc 7 You are here
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Question 1 (i)
Question 1 (ii) Important
Question 2
Question 3
Question 4 Important
Question 5
Question 6 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo