Check sibling questions

 




Transcript

Misc 6(Method 1) If a + ib = (x + ๐‘–)2/(2x^2 + 1) , prove that ๐‘Ž2 + ๐‘2 = (x^2+ 1)2/(2x^2+ 1)^2 ๐‘Ž + ๐‘–๐‘ = (x + i)2/(2x2+ 1) Using ( ๐‘Ž + ๐‘ )^2 = ๐‘Ž2 + ๐‘2 + 2๐‘Ž๐‘ = (๐‘ฅ2 + (๐‘–)^2 + 2๐‘ฅ๐‘–)/(2๐‘ฅ2+1) Putting ๐‘–2 = โˆ’1 = (๐‘ฅ2 โˆ’ 1 + 2๐‘ฅ๐‘–)/(2๐‘ฅ2+ 1) = (x2 โˆ’ 1)/(2x2 + 1) + ๐‘– 2x/(2x2 + 1) Hence ๐‘Ž + ๐‘–๐‘ = (x2 โˆ’ 1)/(2x2 + 1) + ๐‘– 2x/(2x2 + 1) Comparing real part ๐‘Ž = (๐‘ฅ^2 โˆ’ 1)/(2๐‘ฅ^2 + 1) Comparing imaginary part b = 2๐‘ฅ/(2๐‘ฅ2 + 1) Calculating ๐‘Ž2 + ๐‘2 ๐‘Ž2 + ๐‘2 = ((๐‘ฅ^2 โˆ’ 1)/(2๐‘ฅ2 + 1))^2 + (2๐‘ฅ/(2๐‘ฅ2 + 1))^2 = ((๐‘ฅ2โˆ’ 1)2 + (2๐‘ฅ)2)/((2๐‘ฅ2 + 1)2) Using (๐‘Ž โˆ’ ๐‘)^2 = ๐‘Ž2 + ๐‘2 โˆ’ 2๐‘Ž๐‘ = ((๐‘ฅ2 )2 + (1)2 โˆ’ 2( ๐‘ฅ2)1 + 4๐‘ฅ2)/( (2๐‘ฅ2 + 1)2) = (๐‘ฅ4 + 1 โˆ’2๐‘ฅ2 + 4๐‘ฅ2)/((2๐‘ฅ2 +1)2) = (๐‘ฅ4 + 1 + 2๐‘ฅ2)/((2๐‘ฅ2 + 1)2) = ((๐‘ฅ2)2 + (1)2 + 2(๐‘ฅ2) (1))/((2๐‘ฅ^2 + 1)2) Using ( ๐‘Ž + ๐‘ )^2 = ๐‘Ž2 + ๐‘2 + 2๐‘Ž๐‘ = (๐‘ฅ2+ 1)2/((2๐‘ฅ2 + 1)2) Hence ๐‘Ž2 + ๐‘2 = (๐‘ฅ2+ 1)2/((2๐‘ฅ2 + 1)2) Hence proved Misc 6(Method 2) If a + ib = (x + ๐‘–)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Introduction (๐‘Ž + ๐‘–๐‘) ( ๐‘Ž โ€“ ๐‘–๐‘) Using ( a โ€“ b ) ( a + b ) = a2 โ€“ b2 = ๐‘Ž2 โ€“ (๐‘–๐‘)2 = ๐‘Ž2 โ€“ ๐‘–2๐‘2 Putting i2 = โˆ’1 = ๐‘Ž2โˆ’ (โˆ’1) ๐‘2 = ๐‘Ž2 + ๐‘2 Hence, (๐‘Ž + ๐‘–๐‘) (๐‘Ž โ€“ ๐‘–๐‘) = ๐‘Ž2 + ๐‘2 Misc 6(Method 2) If a + ib = (x + ๐‘–)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Given ๐‘Ž + ๐‘–๐‘ = (๐‘ฅ + ๐‘–)2/(2๐‘ฅ2 + 1) For ๐‘Ž โ€“ ๐‘–๐‘ Replace ๐‘– by โ€“ ๐‘– in (1) ๐‘Ž โ€“ ๐‘–๐‘ = (๐‘ฅ โˆ’ ๐‘–)2/(2๐‘ฅ2 + 1) Calculating (๐‘Ž โ€“ ๐‘–๐‘) (๐‘Ž + ๐‘–๐‘) (๐‘Ž โ€“ ๐‘–๐‘) (๐‘Ž + ๐‘–๐‘) = (๐‘ฅ โˆ’ ๐‘–)2/(2๐‘ฅ2 + 1) ร— (๐‘ฅ + ๐‘–)2/(2๐‘ฅ2 + 1) ๐‘Ž2 + ๐‘2 = ((๐‘ฅ โˆ’ ๐‘–)2 (๐‘ฅ + ๐‘–)2)/(2๐‘ฅ2 +1)2 = ( (๐‘ฅ โˆ’ ๐‘–) (๐‘ฅ + ๐‘–))^2/(2๐‘ฅ2 +1)2 Using ( a โ€“ b ) ( a + b ) = a2 โ€“ b2 = (( ๐‘ฅ^2 โˆ’ (๐‘–)^2 )^2 )/(2๐‘ฅ^2 + 1)2 = ใ€–( ๐‘ฅ2โˆ’ (โˆ’1)) ใ€—^2/(2๐‘ฅ2 + 1)2 = ( ๐‘ฅ2 + 1)2/(2๐‘ฅ2 + 1)2 Hence a2 + b2 = (๐‘ฅ2 + 1 )/(2๐‘ฅ2 + 1) Hence proved

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo