Last updated at Dec. 16, 2024 by Teachoo
Misc 6(Method 1) If a + ib = (x + ๐)2/(2x^2 + 1) , prove that ๐2 + ๐2 = (x^2+ 1)2/(2x^2+ 1)^2 ๐ + ๐๐ = (x + i)2/(2x2+ 1) Using ( ๐ + ๐ )^2 = ๐2 + ๐2 + 2๐๐ = (๐ฅ2 + (๐)^2 + 2๐ฅ๐)/(2๐ฅ2+1) Putting ๐2 = โ1 = (๐ฅ2 โ 1 + 2๐ฅ๐)/(2๐ฅ2+ 1) = (x2 โ 1)/(2x2 + 1) + ๐ 2x/(2x2 + 1) Hence ๐ + ๐๐ = (x2 โ 1)/(2x2 + 1) + ๐ 2x/(2x2 + 1) Comparing real part ๐ = (๐ฅ^2 โ 1)/(2๐ฅ^2 + 1) Comparing imaginary part b = 2๐ฅ/(2๐ฅ2 + 1) Calculating ๐2 + ๐2 ๐2 + ๐2 = ((๐ฅ^2 โ 1)/(2๐ฅ2 + 1))^2 + (2๐ฅ/(2๐ฅ2 + 1))^2 = ((๐ฅ2โ 1)2 + (2๐ฅ)2)/((2๐ฅ2 + 1)2) Using (๐ โ ๐)^2 = ๐2 + ๐2 โ 2๐๐ = ((๐ฅ2 )2 + (1)2 โ 2( ๐ฅ2)1 + 4๐ฅ2)/( (2๐ฅ2 + 1)2) = (๐ฅ4 + 1 โ2๐ฅ2 + 4๐ฅ2)/((2๐ฅ2 +1)2) = (๐ฅ4 + 1 + 2๐ฅ2)/((2๐ฅ2 + 1)2) = ((๐ฅ2)2 + (1)2 + 2(๐ฅ2) (1))/((2๐ฅ^2 + 1)2) Using ( ๐ + ๐ )^2 = ๐2 + ๐2 + 2๐๐ = (๐ฅ2+ 1)2/((2๐ฅ2 + 1)2) Hence ๐2 + ๐2 = (๐ฅ2+ 1)2/((2๐ฅ2 + 1)2) Hence proved Misc 6(Method 2) If a + ib = (x + ๐)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Introduction (๐ + ๐๐) ( ๐ โ ๐๐) Using ( a โ b ) ( a + b ) = a2 โ b2 = ๐2 โ (๐๐)2 = ๐2 โ ๐2๐2 Putting i2 = โ1 = ๐2โ (โ1) ๐2 = ๐2 + ๐2 Hence, (๐ + ๐๐) (๐ โ ๐๐) = ๐2 + ๐2 Misc 6(Method 2) If a + ib = (x + ๐)2/(2x^2 + 1) , prove that a2 + b2 = (x2 + 1)2/((2x2 + 1)2) Given ๐ + ๐๐ = (๐ฅ + ๐)2/(2๐ฅ2 + 1) For ๐ โ ๐๐ Replace ๐ by โ ๐ in (1) ๐ โ ๐๐ = (๐ฅ โ ๐)2/(2๐ฅ2 + 1) Calculating (๐ โ ๐๐) (๐ + ๐๐) (๐ โ ๐๐) (๐ + ๐๐) = (๐ฅ โ ๐)2/(2๐ฅ2 + 1) ร (๐ฅ + ๐)2/(2๐ฅ2 + 1) ๐2 + ๐2 = ((๐ฅ โ ๐)2 (๐ฅ + ๐)2)/(2๐ฅ2 +1)2 = ( (๐ฅ โ ๐) (๐ฅ + ๐))^2/(2๐ฅ2 +1)2 Using ( a โ b ) ( a + b ) = a2 โ b2 = (( ๐ฅ^2 โ (๐)^2 )^2 )/(2๐ฅ^2 + 1)2 = ใ( ๐ฅ2โ (โ1)) ใ^2/(2๐ฅ2 + 1)2 = ( ๐ฅ2 + 1)2/(2๐ฅ2 + 1)2 Hence a2 + b2 = (๐ฅ2 + 1 )/(2๐ฅ2 + 1) Hence proved
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6 You are here
Misc 7
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Question 1 (i)
Question 1 (ii) Important
Question 2
Question 3
Question 4 Important
Question 5
Question 6 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo