Check sibling questions

 

 


Transcript

Misc 4 If x – iy = √((a − ib)/(c − id)) prove that (𝑥2 + 𝑦2)^2 = (a^2 + b^2)/(c^2 + d^2 ) Introduction (𝑥 – 𝑖𝑦) (𝑥+ 𝑖𝑦) Using ( a – b ) ( a + b ) = a2 – b2 = (𝑥)^2 – (𝑖𝑦)2 = 𝑥2 – (𝑖) 2𝑦2 = 𝑥2 – (− 1)𝑦2 = 𝑥2 + 𝑦2 Misc 4 If x – iy = √((a − ib)/(c − id)) prove that (𝑥2 + 𝑦2)^2 = (a^2 + b^2)/(c^2 + d^2 ) Given 𝑥 – 𝑖𝑦 = √((a − ib)/(c − id)) Calculating 𝑥 + 𝑖𝑦 Replacing – 𝑖 by 𝑖 𝑥 + 𝑖𝑦 = √((a + ib)/( c + id)) Multiplying (1) &(2) (𝑥 –𝑖𝑦) (𝑥+ 𝑖𝑦) = √((a − ib)/(c − id)) × √((a + ib)/(c + id)) 𝑥2+𝑦2 =√((a−ib)/(c−id)×(a + ib)/(c + id)) =√((( a − ib) (a + ib))/((c − id) (c + id))) Using ( a – b ) ( a + b ) = a2 – b2 =√(((a)^2 − (ib)^2 )/((c)^2−〖 (id)〗^2 )) =√((a^2 − i^2 b^2 )/(c^2 − i^2 d^2 )) Putting i2 = −1 =√((a2−(−1) b2 )/(c2−(−1)d2)) =√((a2+ b2 )/(c + d2)) Hence, 𝑥2 + 𝑦2 =√((a2+ b2 )/(c2 + d2)) Squaring both sides (x2 + y2)2 =(√((a2+ b2 )/(c2 + d2)))^2 (x2 + y2)2 = (a2+ b2 )/(c2 + d2) Hence Proved

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo