Ex 7.1, 9 - Chapter 7 Class 10 Coordinate Geometry
Last updated at Dec. 13, 2024 by Teachoo
Last updated at Dec. 13, 2024 by Teachoo
Ex 7.1, 9 If Q(0, 1) is equidistant from P(5, โ3) and R(x, 6), find the values of x. Also find the distances QR and PR. Since Q is equidistant from P & R QP = QR Finding QP x1 = 0 , y1 = 1 x2 = 5 , y2 = โ3 QP = โ((๐ฅ2 โ๐ฅ1)2+(๐ฆ2 โ๐ฆ1)2) = โ(( 5 โ0)2+(โ3 โ1)2) = โ((5)2+(โ4)2) = โ(25+16) = โ41 Similarly, Finding QR x1 = 0, y1 = 1 x2 = x, y2 = 6 QR = โ((๐ฅ2 โ๐ฅ1)2+(๐ฆ2 โ๐ฆ1)2) = โ(( ๐ฅ โ0)2+(6 โ1)2) = โ((๐ฅ)2+(5)2) = โ(๐ฅ2+ 25) Since, QP = QR โ41 = โ(๐ฅ2+ 25) Squaring both sides (โ41)2 = (โ(๐ฅ2+ 25)) 2 41 = x 2 + 25 0 = x 2 + 25 โ 41 0 = x 2 โ 16 x 2 โ 16 = 0 x 2 = 0 + 16 x 2 = 16 x = ยฑ โ16 x = ยฑ 4 So, x = 4 or x = โ4 Therefore, point R(x, 6) is (4, 6) or (โ4, 6) Now we need to find the distances PR & QR Finding QR QR = โ(๐ฅ2+ 25) Hence, QR = โ๐๐ Taking x = 4 QR = โ(๐ฅ2+ 25) = โ(42+ 25) = โ(16+ 25) = โ๐๐ Taking x = โ4 QR = โ(๐ฅ2+ 25) = โ((โ4)2+ 25) = โ(16+ 25) = โ๐๐ Finding PR x1 = 5, y1 = โ3 x2 = x, y2 = 6 PR = โ((๐ฅ โ5)2+(6 โ(โ3))2) = โ((๐ฅ โ5)2+(6+3)2) = โ((๐ฅ โ5)2+(9)2) Hence, PR = โ๐๐ or ๐โ๐ Taking x = 4 PR = โ((๐ฅโ5)^2+9^2 ) = โ((4โ5)2+81) = โ((โ1)2+81) = โ(1+81) = โ82 Taking x = โ4 PR = โ((๐ฅโ5)^2+9^2 ) = โ((โ4โ5)2+81) = โ((โ9)2+81) = โ(81+81) = 9โ2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo