Check sibling questions


Transcript

Ex 7.1, 9 If Q(0, 1) is equidistant from P(5, โ€“3) and R(x, 6), find the values of x. Also find the distances QR and PR. Since Q is equidistant from P & R QP = QR Finding QP x1 = 0 , y1 = 1 x2 = 5 , y2 = โˆ’3 QP = โˆš((๐‘ฅ2 โˆ’๐‘ฅ1)2+(๐‘ฆ2 โˆ’๐‘ฆ1)2) = โˆš(( 5 โˆ’0)2+(โˆ’3 โˆ’1)2) = โˆš((5)2+(โˆ’4)2) = โˆš(25+16) = โˆš41 Similarly, Finding QR x1 = 0, y1 = 1 x2 = x, y2 = 6 QR = โˆš((๐‘ฅ2 โˆ’๐‘ฅ1)2+(๐‘ฆ2 โˆ’๐‘ฆ1)2) = โˆš(( ๐‘ฅ โˆ’0)2+(6 โˆ’1)2) = โˆš((๐‘ฅ)2+(5)2) = โˆš(๐‘ฅ2+ 25) Since, QP = QR โˆš41 = โˆš(๐‘ฅ2+ 25) Squaring both sides (โˆš41)2 = (โˆš(๐‘ฅ2+ 25)) 2 41 = x 2 + 25 0 = x 2 + 25 โˆ’ 41 0 = x 2 โˆ’ 16 x 2 โˆ’ 16 = 0 x 2 = 0 + 16 x 2 = 16 x = ยฑ โˆš16 x = ยฑ 4 So, x = 4 or x = โˆ’4 Therefore, point R(x, 6) is (4, 6) or (โˆ’4, 6) Now we need to find the distances PR & QR Finding QR QR = โˆš(๐‘ฅ2+ 25) Hence, QR = โˆš๐Ÿ’๐Ÿ Taking x = 4 QR = โˆš(๐‘ฅ2+ 25) = โˆš(42+ 25) = โˆš(16+ 25) = โˆš๐Ÿ’๐Ÿ Taking x = โˆ’4 QR = โˆš(๐‘ฅ2+ 25) = โˆš((โˆ’4)2+ 25) = โˆš(16+ 25) = โˆš๐Ÿ’๐Ÿ Finding PR x1 = 5, y1 = โˆ’3 x2 = x, y2 = 6 PR = โˆš((๐‘ฅ โˆ’5)2+(6 โˆ’(โˆ’3))2) = โˆš((๐‘ฅ โˆ’5)2+(6+3)2) = โˆš((๐‘ฅ โˆ’5)2+(9)2) Hence, PR = โˆš๐Ÿ–๐Ÿ or ๐Ÿ—โˆš๐Ÿ Taking x = 4 PR = โˆš((๐‘ฅโˆ’5)^2+9^2 ) = โˆš((4โˆ’5)2+81) = โˆš((โˆ’1)2+81) = โˆš(1+81) = โˆš82 Taking x = โ€“4 PR = โˆš((๐‘ฅโˆ’5)^2+9^2 ) = โˆš((โˆ’4โˆ’5)2+81) = โˆš((โˆ’9)2+81) = โˆš(81+81) = 9โˆš2

  1. Chapter 7 Class 10 Coordinate Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo