Check sibling questions

The coordinates of the point which is equidistant from the three vertices of the โˆ† AOB as shown in the Fig. 7.1 is

(A)(x, y) ย 

(B) (y, x)

(C) (x/2,y/2)ย 

(D) (x/2,y/2)


Transcript

Question 18 The coordinates of the point which is equidistant from the three vertices of the โˆ† AOB as shown in the Fig. 7.1 is (x, y) (B) (y, x) (C) (๐‘ฅ/2,๐‘ฆ/2) (D) (๐‘ฅ/2,๐‘ฆ/2) Let Required point = P (p, q) Since point P is equidistant from A, B & C Hence, OP = AP = BP Now, OP =โˆš(( ๐‘ โˆ’0)^2+(๐‘žโˆ’0)^2 ) = โˆš(๐’‘^๐Ÿ+๐’’^๐Ÿ ) Finding AP AP = โˆš((๐‘ โˆ’0)^2+(๐‘žโˆ’2๐‘ฆ)^2 ) = โˆš(๐’‘^๐Ÿ+๐’’^๐Ÿ+๐Ÿ’๐’š^๐Ÿโˆ’๐Ÿ’๐’’๐’š) Finding BP BP = โˆš((๐‘ โˆ’2๐‘ฅ)^2+(๐‘žโˆ’0)^2 ) = โˆš(๐’‘^๐Ÿ+๐Ÿ’๐’™^๐Ÿโˆ’๐Ÿ’๐’‘๐’™+๐’’^๐Ÿ ) Now, OP = AP โˆš(๐‘^2+๐‘ž^2 ) = โˆš(๐‘^2+๐‘ž^2+4๐‘ฆ^2โˆ’4๐‘ž๐‘ฆ) Squaring both sides ๐‘^2+๐‘ž^2 = ๐‘^2+๐‘ž^2+4๐‘ฆ^2โˆ’4๐‘ž๐‘ฆ 0 = ๐Ÿ’๐’š^๐Ÿโˆ’๐Ÿ’๐’’๐’š 4๐‘ž๐‘ฆ=4๐‘ฆ^2 ๐‘ž=(4๐‘ฆ^2)/4๐‘ฆ ๐’’=๐’š Also, OP = BP โˆš(๐‘^2+๐‘ž^2 ) = โˆš(๐‘^2+4๐‘ฅ^2โˆ’4๐‘๐‘ฅ+๐‘ž^2 ) Squaring both sides ๐‘^2+๐‘ž^2 = ๐‘^2+4๐‘ฅ^2โˆ’4๐‘๐‘ฅ+๐‘ž^2 0 = ๐Ÿ’๐’™^๐Ÿโˆ’๐Ÿ’๐’‘๐’™ 4๐‘๐‘ฅ=4๐‘ฅ^2 ๐‘=(4๐‘ฅ^2)/4๐‘ฅ ๐’‘=๐’™ Thus, Coordinates of Point P = (p, q) = (x, y) So, the correct answer is (D)

  1. Chapter 7 Class 10 Coordinate Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo