Last updated at Dec. 16, 2024 by Teachoo
Ex 3.1, 4 Which of the following pairs of linear equations are consistent/ inconsistent? If consistent, obtain the solution graphically (iii) 2x + y – 6 = 0 , 4x – 2y – 4 = 0 2x + y – 6 = 0 4x – 2y – 4 = 0 2x + y – 6 = 0 Comparing with a1x + b1y + c1 = 0 ∴ a1 = 2 , b1 = 1 , c1 = –6 4x – 2y – 4 = 0 Comparing with a2x + b2y + c2 = 0 ∴ a2 = 4 , b2 = –2 , c2 = –4 a1 = 2 , b1 = 1 , c1 = –6 & a2 = 4 , b2 = –2 , c2 = –4 Since 𝑎1/𝑎2 ≠ 𝑏1/𝑏2 We have a unique solution Therefore, our system is consistent For Equation (1) 2x + y = 6 Putting x = 0 2(0) + y = 6 0 + y = 6 y = 6 So, x = 0, y = 6 is a solution i.e. (0, 6) is a solution Putting y = 0 2x + 0 = 6 2x = 6 x = 6/2 x = 3 So, x = 3, y = 0 is a solution i.e. (3, 0) is a solution For Equation (2) 4x − 2y = 4 Putting x = 0 4(0) − 2y = 4 0 − 2y = 4 −2y = 4 y = 4/(−2) y = −2 So, x = 0, y = −2 is a solution i.e. (0, −2) is a solution Putting y = 0 4x − 2(0) = 4 4x − 0 = 4 4x = 4 x = 4/4 x = 1 So, x = 1, y = 0 is a solution i.e. (1, 0) is a solution We will plot both equations on the graph So, (2, 2) is the solution
Ex 3.1
Ex 3.1, 1 (ii)
Ex 3.1, 2 (i)
Ex 3.1, 2 (ii)
Ex 3.1, 2 (iii)
Ex 3.1, 3 (i) Important
Ex 3.1, 3 (ii) Important
Ex 3.1, 3 (iii)
Ex 3.1, 3 (iv) Important
Ex 3.1, 3 (v)
Ex 3.1, 4 (i)
Ex 3.1, 4 (ii)
Ex 3.1, 4 (iii) Important You are here
Ex 3.1, 4 (iv)
Ex 3.1, 5
Ex 3.1, 6 Important
Ex 3.1, 7 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo