Check sibling questions

Evaluate:
(cos 2 ⁡ (45° + θ) + cos 2 ⁡ (45° - θ))/(tan ⁡(60° + θ)  × tan(30° - θ) ) + (cot 30° + sin 90°) × (tan 60° − sec 0°)


Transcript

Question 32 (OR 2nd question) Evaluate: (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + (cot 30° + sin 90°) × (tan 60° − sec 0°) (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + (cot 30° + sin 90°) × (tan 60° − sec 0°) = (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + (1/tan⁡〖30°〗 + sin 90°) × (tan 60° − 1/cos⁡〖0°〗 ) = (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + (1/(1/√3) + 1) × (√3 − 1/1) = (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + (√3 + 1) × (√3 − 1) = (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + ((√3)^2 – 12) = (cos^2⁡〖(45° + 𝜃)〗 + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 Writing cos θ = sin (90 – θ) = (sin^2⁡(90° − (45° + 𝜃)) + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 = (sin^2⁡(90° − 45° − 𝜃) + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 = (sin^2⁡(45° − 𝜃) + cos^2⁡〖(45° − 𝜃)〗)/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 Using sin2 x + cos2 x = 1 = 1/(〖tan 〗⁡(60° + 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 Writing tan θ = cot (90 – θ) = 1/(〖cot 〗⁡(90° − (60° + 𝜃)) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 = 1/(〖cot 〗⁡〖(30° − 𝜃)〗 × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 = 1/(1/tan⁡(30° − 𝜃) × 〖tan 〗⁡〖(30° − 𝜃)〗 ) + 2 = 1/1 + 2 = 1 + 2 = 3

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo