Check sibling questions

If sin πœƒ + cos πœƒ =√3, then prove that tan πœƒ + cot πœƒ = 1


Transcript

Question 32 (OR 1st question) If sin πœƒ + cos πœƒ =√3, then prove that tan πœƒ + cot πœƒ = 1 sin πœƒ + cos πœƒ =√3 Squaring both sides (sin πœƒ + cos πœƒ)2 = (√3)^2 (sin πœƒ + cos πœƒ)2 = 3 sin2 πœƒ + cos2 πœƒ + 2 cos ΞΈ sin ΞΈ = 3 Putting sin2 πœƒ + cos2 πœƒ = 1 1 + 2 cos ΞΈ sin ΞΈ = 3 2 cos ΞΈ sin ΞΈ = 3 – 1 2 cos ΞΈ sin ΞΈ = 2 cos ΞΈ sin ΞΈ = 1 We have to prove tan πœƒ + cot πœƒ = 1 Solving LHS tan πœƒ + cot πœƒ = sinβ‘πœƒ/cosβ‘πœƒ +cosβ‘πœƒ/sinβ‘πœƒ = (sin^2β‘πœƒ + cos^2β‘πœƒ)/(cosβ‘πœƒ sinβ‘πœƒ ) Putting sin2 πœƒ + cos2 πœƒ = 1 = 1/(cosβ‘πœƒ sinβ‘πœƒ ) From (1): cos ΞΈ sin ΞΈ = 1 = 1/1 = 1 = RHS Since LHS = RHS Hecne proved

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo