Slide53.JPG

Slide54.JPG
Slide55.JPG Slide56.JPG Slide57.JPG

  1. Chapter 9 Class 8 Algebraic Expressions and Identities
  2. Serial order wise

Transcript

Ex 9.2, 5 Obtain the product of (i) ๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘ง, ๐‘ง๐‘ฅ ๐‘ฅ๐‘ฆ" ร— " ๐‘ฆ๐‘ง" ร—" ๐‘ง๐‘ฅ = ๐‘ฅ ร— ๐‘ฆ ร— ๐‘ฆ ร— ๐‘ง ร— ๐‘ง ร— ๐‘ฅ = (๐‘ฅร—๐‘ฅ) ร— (๐‘ฆร—๐‘ฆ) ร— (๐‘งร—๐‘ง) = ๐‘ฅ^2 ร— ๐‘ฆ^2 ร— ๐‘ง^2 = ๐’™^๐Ÿ ๐’š^๐Ÿ ๐’›^๐Ÿ Ex 9.2, 5 Obtain the product of (ii) ๐‘Ž, โ€“ ๐‘Ž^2, ๐‘Ž^3 ๐‘Ž" ร—" โ€“๐‘Ž^2 "ร— " ๐‘Ž^3 = (๐‘Žร—๐‘Ž^3 ) ร— (โˆ’๐‘Ž^2 ) = ๐‘Ž^4 ร— ใ€–โˆ’๐‘Žใ€—^2 = โ€“ ๐‘Ž^(4 + 2) = โˆ’๐’‚^๐Ÿ” ( ๐‘ฅ๐‘Ž ร—๐‘ฅ๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘)) Ex 9.2, 5 Obtain the product of (iii) 2, 4๐‘ฆ, 8๐‘ฆ^2, 16๐‘ฆ^3 2" ร—" 4๐‘ฆ" ร—" 8๐‘ฆ^2 " ร—" 16๐‘ฆ^3 = 2 ร— 4๐‘ฆ ร— 8๐‘ฆ^2 ร— 16๐‘ฆ^3 = 2ร—4ร—๐‘ฆร—8ร—๐‘ฆ^2ร—16ร—๐‘ฆ^3 = (2ร—4ร—8ร—16)ร—(๐‘ฆร—๐‘ฆ^2ร—๐‘ฆ^3 ) = 1024ร—๐‘ฆ^(1 + 2 + 3) = 1024ร—๐‘ฆ^6 = ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ’๐’š^๐Ÿ” (๐‘ฅ^๐‘Ž ร—๐‘ฅ^๐‘ร—๐‘ฅ^๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘ + ๐‘)) Ex 9.2, 5 Obtain the product of (iv) ๐‘Ž, 2๐‘, 3๐‘, 6๐‘Ž๐‘๐‘ ๐‘Ž" ร—" 2๐‘" ร— " 3๐‘" ร— " 6๐‘Ž๐‘๐‘ = ๐‘Ž ร— 2๐‘ ร— 3๐‘ ร— 6๐‘Ž๐‘๐‘ = ๐‘Žร—2ร—๐‘ร—3ร—๐‘ร—6ร—๐‘Žร—๐‘ร—๐‘ = (2ร—3ร—6)ร—(๐‘Žร—๐‘Ž)ร—(๐‘ร—๐‘)ร—(๐‘ร—๐‘) = 36ร—๐‘Ž^2ร—๐‘^2ร—๐‘^2 = ๐Ÿ‘๐Ÿ”๐’‚^๐Ÿ ๐’ƒ^๐Ÿ ๐’„^๐Ÿ Ex 9.2, 5 Obtain the product of (v) ๐‘š, โ€“๐‘š๐‘›, ๐‘š๐‘›๐‘ ๐‘š" ร— "โ€“๐‘š๐‘›" ร—" ๐‘š๐‘›๐‘ = ๐‘š ร— (โˆ’๐‘š) ร— ๐‘› ร— ๐‘š ร— ๐‘› ร— ๐‘šp = (๐‘šร—โˆ’๐‘šร—๐‘š)ร—(๐‘›ร—๐‘›)ร—๐‘ = โˆ’๐‘š^3ร—๐‘›^2ร—๐‘ = โˆ’๐’Ž^๐Ÿ‘ ๐’^๐Ÿ ๐’‘

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.