Slide12.JPG

Slide13.JPG
Slide14.JPG Slide15.JPG Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG Slide25.JPG Slide26.JPG Slide27.JPG Slide28.JPG Slide29.JPG Slide30.JPG Slide31.JPG Slide32.JPG Slide33.JPG Slide34.JPG Slide35.JPG Slide36.JPG Slide38.JPG Slide39.JPG Slide40.JPG Slide41.JPG Slide42.JPG Slide43.JPG Slide44.JPG Slide45.JPG Slide46.JPG Slide47.JPG Slide48.JPG

  1. Chapter 9 Class 8 Algebraic Expressions and Identities
  2. Serial order wise

Transcript

Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—2๐‘ฅ = 2ร—๐‘ฅร—2ร—๐‘ฅ = (2ร—2)ร—(๐‘ฅร—๐‘ฅ) = 4 ร—๐‘ฅ^2 = 4๐‘ฅ^2 Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’5๐‘ฆ = 2ร—๐‘ฅร—โˆ’5ร—๐‘ฆ = (2ร—โˆ’5)ร—๐‘ฅร—๐‘ฆ = โˆ’10ร—๐‘ฅร—๐‘ฆ = โˆ’10๐‘ฅ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—3๐‘ฅ^2 = 2ร—๐‘ฅร—3ร—๐‘ฅ^2 = (2ร—3)ร—(๐‘ฅร—๐‘ฅ^2 ) = 6ร—๐‘ฅ^3 = 6๐‘ฅ^3 Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’4๐‘ฅ๐‘ฆ = 2ร—๐‘ฅร—โˆ’4ร—๐‘ฅร—y = (2ร—โˆ’4)ร—(๐‘ฅร—๐‘ฅ)ร—๐‘ฆ = โˆ’8ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’8๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—7๐‘ฅ^2 ๐‘ฆ = 2ร—๐‘ฅร—7ร—๐‘ฅ^2ร—y = (2ร—7)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ = 14ร—๐‘ฅ^3ร—๐‘ฆ = 14๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’9๐‘ฅ^2 ๐‘ฆ^2 = 2ร—๐‘ฅร—โˆ’9ร—๐‘ฅ^2ร—y^2 = (2ร—โˆ’9)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’18ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’18๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—2๐‘ฅ = โˆ’5ร—๐‘ฆร—2ร—๐‘ฅ = (โˆ’5ร—2)ร—(๐‘ฆร—๐‘ฅ) = โˆ’10ร—๐‘ฅ๐‘ฆ = โˆ’10๐‘ฅ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’5๐‘ฆ) = โˆ’5ร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (โˆ’5ร—โˆ’5)ร—(๐‘ฆร—๐‘ฆ) = 25ร—๐‘ฆ^2 = 25๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—3๐‘ฅ^2 = โˆ’5ร—๐‘ฆร—โˆ’5ร—๐‘ฅ^2 = (โˆ’5ร—3)ร—๐‘ฆร—๐‘ฅ^2 = โˆ’15ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’15๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’5ร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’5ร—โˆ’4)ร—๐‘ฆร—๐‘ฆร—๐‘ฅ = 20ร—๐‘ฆ^2ร—๐‘ฅ = 20๐‘ฆ^2 ๐‘ฅ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’5ร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’5ร—7)ร—(๐‘ฆร—๐‘ฆ)ร—๐‘ฅ^2 = โˆ’35ร—๐‘ฆ^2ร—๐‘ฅ^2 = โˆ’35๐‘ฆ^2 ๐‘ฅ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’5ร—๐‘ฆร—(โˆ’9)ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’5ร—โˆ’9)ร—๐‘ฅ^2ร—(๐‘ฆร—๐‘ฆ^2 ) = 45ร—๐‘ฅ^2ร—๐‘ฆ^3 = 45๐‘ฅ^2 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—2๐‘ฅ = 5ร—๐‘ฅ^2ร—2ร—๐‘ฅ = (3ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ) = 6ร—๐‘ฅ^3 = 6๐‘ฅ^3 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’5๐‘ฆ) = 3ร—๐‘ฅ^2ร—โˆ’5ร—๐‘ฆ = (3ร—โˆ’5)ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’15๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—3๐‘ฅ^2 = 3ร—๐‘ฅ^2ร—3ร—๐‘ฅ^2 = (3ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 ) = 9ร—๐‘ฅ^4 = 9๐‘ฅ^4 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’4๐‘ฅ๐‘ฆ) = 3ร—๐‘ฅ^2ร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (3ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ = โˆ’12ร—๐‘ฅ^3ร—๐‘ฆ = โˆ’12๐‘ฅ^3 ๐‘ฆ Note: ๐‘ฅ๐‘Ž ร—๐‘ฅ๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘) Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—7๐‘ฅ^2 ๐‘ฆ = 3ร—๐‘ฅ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (3ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ = 21ร—๐‘ฅ^4ร—๐‘ฆ = 21๐‘ฅ^4 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2) = 3ร—๐‘ฅ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (3ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’27ร—๐‘ฅ^4ร—๐‘ฆ^2 = โˆ’27๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—2๐‘ฅ = โˆ’4ร—๐‘ฅร—๐‘ฆร—2ร—๐‘ฅ = (โˆ’4ร—2)ร—(๐‘ฅร—๐‘ฅ)ร—๐‘ฆ = โˆ’8ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’8๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’5๐‘ฆ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (โˆ’4ร—โˆ’5)ร—๐‘ฅร—(๐‘ฆร—๐‘ฆ) = 20ร—๐‘ฅร—๐‘ฆ^2 = 20๐‘ฅ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—3๐‘ฅ^2 = โˆ’4ร—๐‘ฅร—๐‘ฆร—3ร—๐‘ฅ^2 = (โˆ’4ร—3)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ = โˆ’12ร—๐‘ฅ^3ร—๐‘ฆ = โˆ’12๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’4ร—โˆ’4)ร—(๐‘ฅร—๐‘ฅ)ร—(๐‘ฆร—๐‘ฆ) = 16ร—๐‘ฅ^2ร—๐‘ฆ^2 = 16๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’4ร—๐‘ฅร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’4ร—7)ร—(๐‘ฅร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ) = โˆ’28ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’28๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’4ร—โˆ’9)ร—(๐‘ฅร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ^2 ) = 36ร—๐‘ฅ^3ร—๐‘ฆ^3 = 36๐‘ฅ^3 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—2๐‘ฅ = 7ร—๐‘ฅ^2ร—๐‘ฆร—2ร—๐‘ฅ = (7ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ = 14ร—๐‘ฅ^3ร—๐‘ฆ = 14๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’5๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (7ร—โˆ’5)ร—๐‘ฅ^2ร—(๐‘ฆร—๐‘ฆ) = โˆ’35ร—๐‘ฅ^2ร—๐‘ฆ^2 = โˆ’35๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—3๐‘ฅ^2 = 7ร—๐‘ฅ^2ร—๐‘ฆร—3ร—๐‘ฅ^2 = (7ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ = 21ร—๐‘ฅ^4ร—๐‘ฆ = 21๐‘ฅ^4 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (7ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—(๐‘ฆร—๐‘ฆ) = โˆ’28ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’28๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(7๐‘ฅ^2 ๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (7ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ) = 49ร—๐‘ฅ^4ร—๐‘ฆ^2 = 49๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (7ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ^2 ) = โˆ’63ร—๐‘ฅ^4ร—๐‘ฆ^3 = โˆ’63๐‘ฅ^4 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—2๐‘ฅ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—2ร—๐‘ฅ = (โˆ’9ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ^2 = โˆ’18ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’18๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—โˆ’5๐‘ฆ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’5ร—๐‘ฆ = (โˆ’9ร—โˆ’5)ร—๐‘ฅ^2ร—(๐‘ฆ^2ร—๐‘ฆ) = 45ร—๐‘ฅ^2ร—๐‘ฆ^3 = 45๐‘ฅ^2 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(3๐‘ฅ^2) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—3ร—๐‘ฅ^2 = (โˆ’9ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’27ร—๐‘ฅ^4ร—๐‘ฆ^2 = โˆ’27๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’9ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—(๐‘ฆ^2ร—๐‘ฆ) = 36ร—๐‘ฅ^3ร—๐‘ฆ^3 = 36๐‘ฅ^3 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’9ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆ^2ร—๐‘ฆ) = โˆ’63ร—๐‘ฅ^4ร—๐‘ฆ^3 = โˆ’63๐‘ฅ^4 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’9ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆ^2ร—๐‘ฆ^2 ) = 81ร—๐‘ฅ^4ร—๐‘ฆ^4 = 81๐‘ฅ^4 ๐‘ฆ^4 Note: ๐‘ฅ๐‘Ž ร—๐‘ฅ๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘) So, the completed table looks like

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.