Ex 9.2, 3 - Complete the table of products - 2x, -5y, 3x^2, -4xy

Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 2
Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 3 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 4 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 5 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 6 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 7 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 8 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 9 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 10 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 11 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 12 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 13 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 14 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 15 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 16 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 17 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 18 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 19 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 20 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 21 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 22 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 23 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 24 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 25 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 26 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 27 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 28 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 29 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 30 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 31 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 32 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 33 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 34 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 35 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 36

  1. Chapter 9 Class 8 Algebraic Expressions and Identities
  2. Serial order wise

Transcript

Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—2๐‘ฅ = 2ร—๐‘ฅร—2ร—๐‘ฅ = (2ร—2)ร—(๐‘ฅร—๐‘ฅ) = 4 ร—๐‘ฅ^2 = 4๐‘ฅ^2 Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’5๐‘ฆ = 2ร—๐‘ฅร—โˆ’5ร—๐‘ฆ = (2ร—โˆ’5)ร—๐‘ฅร—๐‘ฆ = โˆ’10ร—๐‘ฅร—๐‘ฆ = โˆ’10๐‘ฅ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—3๐‘ฅ^2 = 2ร—๐‘ฅร—3ร—๐‘ฅ^2 = (2ร—3)ร—(๐‘ฅร—๐‘ฅ^2 ) = 6ร—๐‘ฅ^3 = 6๐‘ฅ^3 Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’4๐‘ฅ๐‘ฆ = 2ร—๐‘ฅร—โˆ’4ร—๐‘ฅร—y = (2ร—โˆ’4)ร—(๐‘ฅร—๐‘ฅ)ร—๐‘ฆ = โˆ’8ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’8๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—7๐‘ฅ^2 ๐‘ฆ = 2ร—๐‘ฅร—7ร—๐‘ฅ^2ร—y = (2ร—7)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ = 14ร—๐‘ฅ^3ร—๐‘ฆ = 14๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 2x 2๐‘ฅร—โˆ’9๐‘ฅ^2 ๐‘ฆ^2 = 2ร—๐‘ฅร—โˆ’9ร—๐‘ฅ^2ร—y^2 = (2ร—โˆ’9)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’18ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’18๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—2๐‘ฅ = โˆ’5ร—๐‘ฆร—2ร—๐‘ฅ = (โˆ’5ร—2)ร—(๐‘ฆร—๐‘ฅ) = โˆ’10ร—๐‘ฅ๐‘ฆ = โˆ’10๐‘ฅ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’5๐‘ฆ) = โˆ’5ร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (โˆ’5ร—โˆ’5)ร—(๐‘ฆร—๐‘ฆ) = 25ร—๐‘ฆ^2 = 25๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—3๐‘ฅ^2 = โˆ’5ร—๐‘ฆร—โˆ’5ร—๐‘ฅ^2 = (โˆ’5ร—3)ร—๐‘ฆร—๐‘ฅ^2 = โˆ’15ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’15๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’5ร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’5ร—โˆ’4)ร—๐‘ฆร—๐‘ฆร—๐‘ฅ = 20ร—๐‘ฆ^2ร—๐‘ฅ = 20๐‘ฆ^2 ๐‘ฅ Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’5ร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’5ร—7)ร—(๐‘ฆร—๐‘ฆ)ร—๐‘ฅ^2 = โˆ’35ร—๐‘ฆ^2ร—๐‘ฅ^2 = โˆ’35๐‘ฆ^2 ๐‘ฅ^2 Ex 9.2, 3 Complete the table of products. For โ€“5y (โˆ’5๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’5ร—๐‘ฆร—(โˆ’9)ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’5ร—โˆ’9)ร—๐‘ฅ^2ร—(๐‘ฆร—๐‘ฆ^2 ) = 45ร—๐‘ฅ^2ร—๐‘ฆ^3 = 45๐‘ฅ^2 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—2๐‘ฅ = 5ร—๐‘ฅ^2ร—2ร—๐‘ฅ = (3ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ) = 6ร—๐‘ฅ^3 = 6๐‘ฅ^3 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’5๐‘ฆ) = 3ร—๐‘ฅ^2ร—โˆ’5ร—๐‘ฆ = (3ร—โˆ’5)ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’15๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—3๐‘ฅ^2 = 3ร—๐‘ฅ^2ร—3ร—๐‘ฅ^2 = (3ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 ) = 9ร—๐‘ฅ^4 = 9๐‘ฅ^4 Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’4๐‘ฅ๐‘ฆ) = 3ร—๐‘ฅ^2ร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (3ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ = โˆ’12ร—๐‘ฅ^3ร—๐‘ฆ = โˆ’12๐‘ฅ^3 ๐‘ฆ Note: ๐‘ฅ๐‘Ž ร—๐‘ฅ๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘) Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—7๐‘ฅ^2 ๐‘ฆ = 3ร—๐‘ฅ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (3ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ = 21ร—๐‘ฅ^4ร—๐‘ฆ = 21๐‘ฅ^4 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For 3x2 3๐‘ฅ^2ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2) = 3ร—๐‘ฅ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (3ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’27ร—๐‘ฅ^4ร—๐‘ฆ^2 = โˆ’27๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—2๐‘ฅ = โˆ’4ร—๐‘ฅร—๐‘ฆร—2ร—๐‘ฅ = (โˆ’4ร—2)ร—(๐‘ฅร—๐‘ฅ)ร—๐‘ฆ = โˆ’8ร—๐‘ฅ^2ร—๐‘ฆ = โˆ’8๐‘ฅ^2 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’5๐‘ฆ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (โˆ’4ร—โˆ’5)ร—๐‘ฅร—(๐‘ฆร—๐‘ฆ) = 20ร—๐‘ฅร—๐‘ฆ^2 = 20๐‘ฅ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—3๐‘ฅ^2 = โˆ’4ร—๐‘ฅร—๐‘ฆร—3ร—๐‘ฅ^2 = (โˆ’4ร—3)ร—(๐‘ฅร—๐‘ฅ^2 )ร—๐‘ฆ = โˆ’12ร—๐‘ฅ^3ร—๐‘ฆ = โˆ’12๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’4ร—โˆ’4)ร—(๐‘ฅร—๐‘ฅ)ร—(๐‘ฆร—๐‘ฆ) = 16ร—๐‘ฅ^2ร—๐‘ฆ^2 = 16๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’4ร—๐‘ฅร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’4ร—7)ร—(๐‘ฅร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ) = โˆ’28ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’28๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ’๐’™๐’š (โˆ’4๐‘ฅ๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’4ร—๐‘ฅร—๐‘ฆร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’4ร—โˆ’9)ร—(๐‘ฅร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ^2 ) = 36ร—๐‘ฅ^3ร—๐‘ฆ^3 = 36๐‘ฅ^3 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—2๐‘ฅ = 7ร—๐‘ฅ^2ร—๐‘ฆร—2ร—๐‘ฅ = (7ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ = 14ร—๐‘ฅ^3ร—๐‘ฆ = 14๐‘ฅ^3 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’5๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’5ร—๐‘ฆ = (7ร—โˆ’5)ร—๐‘ฅ^2ร—(๐‘ฆร—๐‘ฆ) = โˆ’35ร—๐‘ฅ^2ร—๐‘ฆ^2 = โˆ’35๐‘ฅ^2 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—3๐‘ฅ^2 = 7ร—๐‘ฅ^2ร—๐‘ฆร—3ร—๐‘ฅ^2 = (7ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ = 21ร—๐‘ฅ^4ร—๐‘ฆ = 21๐‘ฅ^4 ๐‘ฆ Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’4๐‘ฅ๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (7ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—(๐‘ฆร—๐‘ฆ) = โˆ’28ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’28๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(7๐‘ฅ^2 ๐‘ฆ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—7ร—๐‘ฅ^2ร—๐‘ฆ = (7ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ) = 49ร—๐‘ฅ^4ร—๐‘ฆ^2 = 49๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For ๐Ÿ•๐’™^๐Ÿ ๐’š (7๐‘ฅ^2 ๐‘ฆ)ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = 7ร—๐‘ฅ^2ร—๐‘ฆร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (7ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆร—๐‘ฆ^2 ) = โˆ’63ร—๐‘ฅ^4ร—๐‘ฆ^3 = โˆ’63๐‘ฅ^4 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—2๐‘ฅ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—2ร—๐‘ฅ = (โˆ’9ร—2)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—๐‘ฆ^2 = โˆ’18ร—๐‘ฅ^3ร—๐‘ฆ^2 = โˆ’18๐‘ฅ^3 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—โˆ’5๐‘ฆ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’5ร—๐‘ฆ = (โˆ’9ร—โˆ’5)ร—๐‘ฅ^2ร—(๐‘ฆ^2ร—๐‘ฆ) = 45ร—๐‘ฅ^2ร—๐‘ฆ^3 = 45๐‘ฅ^2 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(3๐‘ฅ^2) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—3ร—๐‘ฅ^2 = (โˆ’9ร—3)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—๐‘ฆ^2 = โˆ’27ร—๐‘ฅ^4ร—๐‘ฆ^2 = โˆ’27๐‘ฅ^4 ๐‘ฆ^2 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(โˆ’4๐‘ฅ๐‘ฆ) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’4ร—๐‘ฅร—๐‘ฆ = (โˆ’9ร—โˆ’4)ร—(๐‘ฅ^2ร—๐‘ฅ)ร—(๐‘ฆ^2ร—๐‘ฆ) = 36ร—๐‘ฅ^3ร—๐‘ฆ^3 = 36๐‘ฅ^3 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—7๐‘ฅ^2 ๐‘ฆ = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—7ร—๐‘ฅ^2ร—๐‘ฆ = (โˆ’9ร—7)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆ^2ร—๐‘ฆ) = โˆ’63ร—๐‘ฅ^4ร—๐‘ฆ^3 = โˆ’63๐‘ฅ^4 ๐‘ฆ^3 Ex 9.2, 3 Complete the table of products. For โˆ’๐Ÿ—๐’™^๐Ÿ ๐’š^๐Ÿ (โˆ’9๐‘ฅ^2 ๐‘ฆ^2 )ร—(โˆ’9๐‘ฅ^2 ๐‘ฆ^2 ) = โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2ร—โˆ’9ร—๐‘ฅ^2ร—๐‘ฆ^2 = (โˆ’9ร—โˆ’9)ร—(๐‘ฅ^2ร—๐‘ฅ^2 )ร—(๐‘ฆ^2ร—๐‘ฆ^2 ) = 81ร—๐‘ฅ^4ร—๐‘ฆ^4 = 81๐‘ฅ^4 ๐‘ฆ^4 Note: ๐‘ฅ๐‘Ž ร—๐‘ฅ๐‘ = ๐‘ฅ^(๐‘Ž + ๐‘) So, the completed table looks like

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.