Ex 11.2
Ex 11.2, 1 (ii) Important
Ex 11.2, 1 (iii)
Ex 11.2, 1 (iv) Important
Ex 11.2, 1 (v) Important
Ex 11.2, 1 (vi)
Ex 11.2, 1 (vii) Important
Ex 11.2, 1 (viii)
Ex 11.2, 1 (ix) Important
Ex 11.2, 1 (x)
Ex 11.2, 2 (i)
Ex 11.2, 2 (ii) Important
Ex 11.2, 2 (iii)
Ex 11.2, 2 (iv) Important
Ex 11.2, 2 (v)
Ex 11.2, 2 (vi) Important
Ex 11.2, 2 (vii)
Ex 11.2, 2 (viii) Important
Ex 11.2, 2 (ix) Important
Ex 11.2, 2 (x)
Ex 11.2, 2 (xi) Important
Ex 11.2, 2 (xii)
Ex 11.2, 3 (i) Important
Ex 11.2, 3 (ii)
Ex 11.2, 3 (iii) Important
Ex 11.2, 3 (iv) Important
Ex 11.2, 4 (i) You are here
Ex 11.2, 4 (ii) Important
Ex 11.2, 4 (iii) Important
Ex 11.2, 4 (iv)
Ex 11.2, 5 (i) Important
Ex 11.2, 5 (ii)
Ex 11.2, 5 (iii) Important
Last updated at April 16, 2024 by Teachoo
Ex 11.2, 4 Express each of the following as a product of prime factors only in exponential form: (i) 108 × 192 108 × 192 2|108 2|54 3|27 3|9 3|3 |1 2|192 2|96 2|48 2|24 2|12 2|6 2|3 |1 ∴ 108 = 2 × 2 × 3 × 3 × 3 = 22 × 33 ∴ 192 = 2 × 2 × 2 × 2 × 2 × 2 × 3 = 26 × 3 So, 108 × 192 = (22 × 33) × (26 × 3) = 22 × 26 × 33 × 3 As am × bm = (a × b)m = 22 + 6 × 33 + 1 = 28 × 34