Slide26.JPG

Slide27.JPG
Slide28.JPG
Slide29.JPG
Slide30.JPG Slide31.JPG Slide32.JPG


Transcript

Ex 9.3, 11 Find a particular solution satisfying the given condition : (𝑥^3+𝑥^2+𝑥+1) 𝑑𝑦/𝑑𝑥=2𝑥^2+𝑥; 𝑦=1 when 𝑥=0(𝑥^3+𝑥^2+𝑥+1) 𝑑𝑦/𝑑𝑥=2𝑥^2+𝑥 𝒅𝒚 = (𝟐𝒙^𝟐 + 𝒙)/(𝒙^𝟑 + 𝒙^𝟐 + 𝒙 + 𝟏) 𝒅𝒙 Integrating both sides ∫1▒〖𝑑𝑦=∫1▒(2𝑥^2 + 𝑥)/(𝑥3 + 𝑥2 + 𝑥 + 1)〗 dx y = ∫1▒(𝟐𝒙^𝟐 + 𝒙)/( (𝒙 + 𝟏)(𝒙^𝟐 + 𝟏)) dx Rough x = −1 is a solution of x3 + x2 + x + 1 as (-1)2 + (-1)2 + (−1) + 1 = 0 Hence (x + 1) is one of its factors. So, we can write x3 + x2 + x + 1 = (x + 1) (x2 + 1) Integrating by partial fractions, using formula (𝟐𝒙^𝟐 +𝒙)/((𝒙 + 𝟏)(𝒙^𝟐+𝟏)) = 𝑨/(𝒙 + 𝟏)+(𝑩𝒙 + 𝑪)/(𝒙^𝟐 + 𝟏) (2𝑥^2 +𝑥)/((𝑥 + 1)(𝑥^2+1)) = (𝐴(𝑥^2+1) + (𝐵𝑥 + 𝑐)(𝑥 + 1))/((𝑥 + 1)(𝑥^2 + 1)) 2𝑥^2 + x = A (𝑥^2+ 1) + (Bx + C) (x + 1) Putting x = −1 2(−1)2 − 1 = A ((−1)2 + 1) + (B(−1) + C)(−1 + 1) 2 − 1 = A(2) + (–B + C)(0) 1 = 2A A = 𝟏/𝟐 Putting x = 0 0 = A (0 + 1) + (B(0) + C)(0 + 1) 0 = A + C(1) A = −C Since A = 𝟏/𝟐 ∴ C = (−𝟏)/𝟐 Putting x = 1 2(1) + 1 = A (12 + 1) + (B(1) + C) (1 + 1) 3 = 2A + 2B + 2C Putting A = 𝟏/𝟐, C = (−𝟏)/𝟐 3 = 2 × 1/2 + 2B + 2 (−1/2 ) 3 = 2B B = 𝟑/𝟐 Hence, (𝟐𝒙^𝟐 + 𝒙)/((𝒙 + 𝟏)(𝒙^𝟐+𝟏)) = 1/(2(𝑥 + 1)) + (3/2 𝑥 − 1/2)/(𝑥^2 + 1) = 𝟏/(𝟐(𝒙 + 𝟏)) + (𝟑𝒙 −𝟏)/(〖𝟐(𝒙〗^(𝟐 )+ 𝟏)) Now, our equation becomes y = ∫1▒〖(2𝑥^2 + 𝑥)/((𝑥 + 1)(𝑥^2 + 1)) 𝑑𝑥〗 y = ∫1▒〖𝟏/(𝟐(𝒙 + 𝟏))+𝟑𝒙/(𝟐(𝒙^(𝟐 )+𝟏)) − 𝟏/𝟐(𝒙^𝟐 + 𝟏) 𝒅𝒙〗 y = ∫1▒〖1/(2(𝑥 + 1)) 𝑑𝑥〗+∫1▒〖3𝑥/(2(𝑥^(2 )+1)) 𝑑𝑥〗−∫1▒〖 1/2(𝑥^2 + 1) 𝑑𝑥〗 y = 𝟏/𝟐 log (x + 1) +∫1▒〖𝟑𝒙/(𝟐(𝒙^(𝟐 )+𝟏)) 𝒅𝒙〗− 𝟏/𝟐 tan−1 x Integrating ∫1▒〖𝟑𝒙/(𝟐(𝒙^𝟐 + 𝟏)) 𝒅𝒙〗 Put t = x2 + 1 dt = 2x dx ∴ dx = 𝑑𝑡/2𝑥 So, ∫1▒〖𝟑𝒙/(𝟐(𝒙^𝟐 + 𝟏)) 𝒅𝒙〗 = 3/2 ∫1▒𝑥/𝑡×𝑑𝑡/2𝑥 = 3/4 ∫1▒𝑑𝑡/𝑡 = 𝟑/𝟒 log |𝒕|+𝒄 Putting back value of t ∫1▒〖3𝑥/(2(𝑥^2+1)) 𝑑𝑥〗 = 3/4 log (x2 + 1) + C Now, From (1) y = 1/2 log (x + 1) +∫1▒〖3𝑥/(2(𝑥^(2 )+1)) 𝑑𝑥〗− 1/2 tan−1 x y = 1/2 log (x + 1) +3/4 " log (x2 + 1)"− 1/2 tan−1 x + C Putting x = 0 and y = 1 1 = 1/2 log (0 + 1) + 3/4 log (0 + 1) − 1/2 tan−1 0 + C 1 = 1/2 log (1) + 3/4 log (1) − 1/2 tan−1 0 + C 1 = 0 + 0 − 0 + C 1 = C Putting value of C in (1) y = 𝟏/𝟐 log (x + 1) + 𝟑/𝟒 log (x2 + 1) − 𝟏/𝟐 tan−1 x + 1 y = 𝟐/4 log (x + 1) + 3/4 log (x2 + 1) − 1/2 tan−1 x + 1 y = 1/4 log (x + 1)2 + 1/4 log (x2 + 1)3 − 1/2 tan−1 x + 1 y = 1/4 [log⁡〖 (𝑥+1)^2 〗+log⁡〖(𝑥^2+1)^3 〗 ] "− " 1/2 " tan−1 x + 1 " As log 𝑎 + log b = log 𝑎b y = 𝟏/𝟒 𝒍𝒐𝒈⁡〖〖 [(𝒙+𝟏)〗^𝟐 (𝒙^𝟐+𝟏)^𝟑] 〗 "− " 𝟏/𝟐 " tan−1 x + 1 "

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.