Ex 9.3, 11 - Find particular solution: (x3 + x2 + x + 1) dy/dx - Ex 9.3

part 2 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 3 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 4 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 5 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations part 6 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations part 7 - Ex 9.3, 11 - Ex 9.3 - Serial order wise - Chapter 9 Class 12 Differential Equations

Share on WhatsApp

Transcript

Ex 9.3, 11 Find a particular solution satisfying the given condition : (π‘₯^3+π‘₯^2+π‘₯+1) 𝑑𝑦/𝑑π‘₯=2π‘₯^2+π‘₯; 𝑦=1 when π‘₯=0(π‘₯^3+π‘₯^2+π‘₯+1) 𝑑𝑦/𝑑π‘₯=2π‘₯^2+π‘₯ π’…π’š = (πŸπ’™^𝟐 + 𝒙)/(𝒙^πŸ‘ + 𝒙^𝟐 + 𝒙 + 𝟏) 𝒅𝒙 Integrating both sides ∫1▒〖𝑑𝑦=∫1β–’(2π‘₯^2 + π‘₯)/(π‘₯3 + π‘₯2 + π‘₯ + 1)γ€— dx y = ∫1β–’(πŸπ’™^𝟐 + 𝒙)/( (𝒙 + 𝟏)(𝒙^𝟐 + 𝟏)) dx Rough x = βˆ’1 is a solution of x3 + x2 + x + 1 as (-1)2 + (-1)2 + (βˆ’1) + 1 = 0 Hence (x + 1) is one of its factors. So, we can write x3 + x2 + x + 1 = (x + 1) (x2 + 1) Integrating by partial fractions, using formula (πŸπ’™^𝟐 +𝒙)/((𝒙 + 𝟏)(𝒙^𝟐+𝟏)) = 𝑨/(𝒙 + 𝟏)+(𝑩𝒙 + π‘ͺ)/(𝒙^𝟐 + 𝟏) (2π‘₯^2 +π‘₯)/((π‘₯ + 1)(π‘₯^2+1)) = (𝐴(π‘₯^2+1) + (𝐡π‘₯ + 𝑐)(π‘₯ + 1))/((π‘₯ + 1)(π‘₯^2 + 1)) 2π‘₯^2 + x = A (π‘₯^2+ 1) + (Bx + C) (x + 1) Putting x = βˆ’1 2(βˆ’1)2 βˆ’ 1 = A ((βˆ’1)2 + 1) + (B(βˆ’1) + C)(βˆ’1 + 1) 2 βˆ’ 1 = A(2) + (–B + C)(0) 1 = 2A A = 𝟏/𝟐 Putting x = 0 0 = A (0 + 1) + (B(0) + C)(0 + 1) 0 = A + C(1) A = βˆ’C Since A = 𝟏/𝟐 ∴ C = (βˆ’πŸ)/𝟐 Putting x = 1 2(1) + 1 = A (12 + 1) + (B(1) + C) (1 + 1) 3 = 2A + 2B + 2C Putting A = 𝟏/𝟐, C = (βˆ’πŸ)/𝟐 3 = 2 Γ— 1/2 + 2B + 2 (βˆ’1/2 ) 3 = 2B B = πŸ‘/𝟐 Hence, (πŸπ’™^𝟐 + 𝒙)/((𝒙 + 𝟏)(𝒙^𝟐+𝟏)) = 1/(2(π‘₯ + 1)) + (3/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) = 𝟏/(𝟐(𝒙 + 𝟏)) + (πŸ‘π’™ βˆ’πŸ)/(γ€–πŸ(𝒙〗^(𝟐 )+ 𝟏)) Now, our equation becomes y = ∫1β–’γ€–(2π‘₯^2 + π‘₯)/((π‘₯ + 1)(π‘₯^2 + 1)) 𝑑π‘₯γ€— y = ∫1β–’γ€–πŸ/(𝟐(𝒙 + 𝟏))+πŸ‘π’™/(𝟐(𝒙^(𝟐 )+𝟏)) βˆ’ 𝟏/𝟐(𝒙^𝟐 + 𝟏) 𝒅𝒙〗 y = ∫1β–’γ€–1/(2(π‘₯ + 1)) 𝑑π‘₯γ€—+∫1β–’γ€–3π‘₯/(2(π‘₯^(2 )+1)) 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€– 1/2(π‘₯^2 + 1) 𝑑π‘₯γ€— y = 𝟏/𝟐 log (x + 1) +∫1β–’γ€–πŸ‘π’™/(𝟐(𝒙^(𝟐 )+𝟏)) π’…π’™γ€—βˆ’ 𝟏/𝟐 tanβˆ’1 x Integrating ∫1β–’γ€–πŸ‘π’™/(𝟐(𝒙^𝟐 + 𝟏)) 𝒅𝒙〗 Put t = x2 + 1 dt = 2x dx ∴ dx = 𝑑𝑑/2π‘₯ So, ∫1β–’γ€–πŸ‘π’™/(𝟐(𝒙^𝟐 + 𝟏)) 𝒅𝒙〗 = 3/2 ∫1β–’π‘₯/𝑑×𝑑𝑑/2π‘₯ = 3/4 ∫1▒𝑑𝑑/𝑑 = πŸ‘/πŸ’ log |𝒕|+𝒄 Putting back value of t ∫1β–’γ€–3π‘₯/(2(π‘₯^2+1)) 𝑑π‘₯γ€— = 3/4 log (x2 + 1) + C Now, From (1) y = 1/2 log (x + 1) +∫1β–’γ€–3π‘₯/(2(π‘₯^(2 )+1)) 𝑑π‘₯γ€—βˆ’ 1/2 tanβˆ’1 x y = 1/2 log (x + 1) +3/4 " log (x2 + 1)"βˆ’ 1/2 tanβˆ’1 x + C Putting x = 0 and y = 1 1 = 1/2 log (0 + 1) + 3/4 log (0 + 1) βˆ’ 1/2 tanβˆ’1 0 + C 1 = 1/2 log (1) + 3/4 log (1) βˆ’ 1/2 tanβˆ’1 0 + C 1 = 0 + 0 βˆ’ 0 + C 1 = C Putting value of C in (1) y = 𝟏/𝟐 log (x + 1) + πŸ‘/πŸ’ log (x2 + 1) βˆ’ 𝟏/𝟐 tanβˆ’1 x + 1 y = 𝟐/4 log (x + 1) + 3/4 log (x2 + 1) βˆ’ 1/2 tanβˆ’1 x + 1 y = 1/4 log (x + 1)2 + 1/4 log (x2 + 1)3 βˆ’ 1/2 tanβˆ’1 x + 1 y = 1/4 [log⁑〖 (π‘₯+1)^2 γ€—+log⁑〖(π‘₯^2+1)^3 γ€— ] "βˆ’ " 1/2 " tanβˆ’1 x + 1 " As log π‘Ž + log b = log π‘Žb y = 𝟏/πŸ’ π’π’π’ˆβ‘γ€–γ€– [(𝒙+𝟏)γ€—^𝟐 (𝒙^𝟐+𝟏)^πŸ‘] γ€— "βˆ’ " 𝟏/𝟐 " tanβˆ’1 x + 1 "

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo