Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Independent events
Ex 13.2, 6
Ex 13.2, 10 Important
Ex 13.2, 5
Example 10
Example 11 Important
Example 12 Important You are here
Ex 13.2, 15 (i)
Ex 13.2, 8
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 4
Ex 13.2, 13 Important
Ex 13.2, 14 Important
Ex 13.2, 18 (MCQ) Important
Example 13 Important
Example 14 Important
Independent events
Last updated at May 29, 2023 by Teachoo
Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads or three tails’, F ‘at least two heads’ and G ‘at most two heads’. of the pairs (E,F), (E,G) & (F,G), which are independent? which are dependent? Two events A and B are independent if P(A ∩ B) = P(A) . P(B) Three coins are tossed simultaneously S = {(H, H, H), (H, H, T), (T, H, H), (H, T, H), (T, T, H), (T, H, T), (H, T, T), (T, T, T)} Let us define 3 events as E : 3 head or 3 tails F : atleast two heads G : atmost two heads E : 3 head or 3 tails E : {HHH, TTT} P(E) = 2/8 = 1/4 vF : atleast two heads F : {HHH, HHT, HTH, THH} P(F) = 4/8 = 1/2 G : atmost two heads G : {HHT, HTH, THH HTT, THT, TTH ,TTT } P(G) = 7/8 Finding probabilities of E, F and G Now, let us find Probabilities of E ∩ F , F ∩ G , E ∩ G E ∩ F = 3 head = {HHH} So, P(E ∩ F) = 1/8 Now, P(E) . P(F) = 1/4 × 1/2 = 1/8 P(E ∩ F) = P(E).P(F) Thus, E & F are independent events F ∩ G = Two head = {HHH, HTH, THH} So, P(F ∩ G) = 3/8 Now, P(F) . P(G) = 1/2 × 7/8 = 7/16 P (F ∩ G) ≠ P(F) . P(G) Thus, F & G are not independent events E ∩ G = 3 tails = {TTT} So, P(E ∩ G) = 1/8 Now, P(E) . P(G) = 1/4 × 7/8 = 7/32 P (E ∩𝐆) ≠ P (E). P(G) Thus, E & G are not independent events